Journal Home > Volume 9 , Issue 6

Graphene quantum dots (GQDs) are promising candidates for potential applications such as novel optoelectronic devices and bio-imaging. However, insufficient light absorption to exhibit their intriguing characteristics. The strong confinement of light caused by the Au nanoparticles as an antenna can considerably boost the light absorption. With the assistance of ultraviolet irradiation, we prepared bluish-green luminescent nanospheres by the hybridization of GQD and Au nanoparticles (GQD/Au). These nanospheres showed a photoluminescence quantum yield of up to 26.9%. The GQD/Au nanospheres were synthesized using a solution of GQDs and HAuCl4 by a photochemical method with the reduction of GQDs and the formation of metallic Au. The GQDs and Au nanoparticles self-assembled and aggregated into nanospheres via aurophilicity and hydrogen bonding interactions. The average size of the GQD/Au nanospheres was found to be in the range of 150–170 nm, which is much larger than that of the pristine GQDs (4–7 nm). The GQD/Au nanospheres exhibited an absorption band at 541 nm, which indicates the presence of Au in the nanospheres. The typical absorbance features of GQDs were observed near 236 and 303 nm. The photoluminescence characteristics were investigated using the excitation and emission spectra. The GQD/Au nanospheres exhibited two emission peaks at 468 and 529 nm in the visible range. The green fluorescent peak located at 529 nm was newly generated by the hybridization. The GQD/Au nanospheres showed an emission efficiency which was two times more than that of the intrinsic GQDs. The reason for this increase was the surface plasmon resonance from the Au particles, which improved the fluorescence property of the resulting nanospheres. These nanospheres can be perceived as outstanding candidates for applications such as displays, optoelectronic devices, and imaging of the biological samples with high emission intensity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Surface plasmon enhancement of photoluminescence in photo-chemically synthesized graphene quantum dot and Au nanosphere

Show Author's information Byeongho Park§Sun Jun Kim§Ji Soo SohnMin Sik NamShinill KangSeong Chan Jun( )
School of Mechanical EngineeringYonsei University50 Yonsei-ro, Seodaemun-gu, Seoul120-749Republic of Korea

§ These authors contributed equally to this work.

Abstract

Graphene quantum dots (GQDs) are promising candidates for potential applications such as novel optoelectronic devices and bio-imaging. However, insufficient light absorption to exhibit their intriguing characteristics. The strong confinement of light caused by the Au nanoparticles as an antenna can considerably boost the light absorption. With the assistance of ultraviolet irradiation, we prepared bluish-green luminescent nanospheres by the hybridization of GQD and Au nanoparticles (GQD/Au). These nanospheres showed a photoluminescence quantum yield of up to 26.9%. The GQD/Au nanospheres were synthesized using a solution of GQDs and HAuCl4 by a photochemical method with the reduction of GQDs and the formation of metallic Au. The GQDs and Au nanoparticles self-assembled and aggregated into nanospheres via aurophilicity and hydrogen bonding interactions. The average size of the GQD/Au nanospheres was found to be in the range of 150–170 nm, which is much larger than that of the pristine GQDs (4–7 nm). The GQD/Au nanospheres exhibited an absorption band at 541 nm, which indicates the presence of Au in the nanospheres. The typical absorbance features of GQDs were observed near 236 and 303 nm. The photoluminescence characteristics were investigated using the excitation and emission spectra. The GQD/Au nanospheres exhibited two emission peaks at 468 and 529 nm in the visible range. The green fluorescent peak located at 529 nm was newly generated by the hybridization. The GQD/Au nanospheres showed an emission efficiency which was two times more than that of the intrinsic GQDs. The reason for this increase was the surface plasmon resonance from the Au particles, which improved the fluorescence property of the resulting nanospheres. These nanospheres can be perceived as outstanding candidates for applications such as displays, optoelectronic devices, and imaging of the biological samples with high emission intensity.

Keywords: gold, UV irradiation, photoluminescence, graphene quantum dot, nanosphere

References(62)

1

Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.

2

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

3

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.

4

Xu, C.; Wang, X.; Zhu, J. W. Graphene-metal particle nanocomposites. J. Phys. Chem. C 2008, 112, 19841-19845.

5

Kim, H.; Abdala, A. A.; Macosko, C. W. Graphene/polymer nanocomposites. Macromolecules 2010, 43, 6515-6530.

6

Wang, E.; Desai, M. S.; Lee, S. -W. Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett. 2013, 13, 2826-2830.

7

Zhao, J.; Chen, G. F.; Zhu, L.; Li, G. X. Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem. Commun. 2011, 13, 31-33.

8

Fei, H. L.; Ye, R. Q.; Ye, G. L.; Gong, Y. J.; Peng, Z. W.; Fan, X. J.; Samuel, E. L. G.; Ajayan, P. M.; Tour, J. M. Boron- and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano 2014, 8, 10837-10843.

9

Liu, W. -W.; Feng, Y. -Q.; Yan, X. -B.; Chen, J. -T.; Xue, Q. -J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 2013, 23, 4111-4122.

10

Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010, 22, 734-738.

11

Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R. et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011, 47, 6858-6860.

12

Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L. H.; Song, L.; Alemany, L. B.; Zhan, X. B.; Gao, G. H. et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844-849.

13

Shen, J. H.; Zhu, Y. H.; Yang, X. L.; Li, C. Z. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 2012, 48, 3686-3699.

14

Li, Y.; Zhao, Y.; Cheng, H. H.; Hu, Y.; Shi, G. Q.; Dai, L. M.; Qu, L. T. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 2012, 134, 15-18.

15

Gupta, V.; Chaudhary, N.; Srivastava, R.; Sharma, G. D.; Bhardwaj, R.; Chand, S. Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 2011, 133, 9960-9963.

16

Mueller, M. L.; Yan, X.; McGuire, J. A.; Li, L. -S. Triplet states and electronic relaxation in photoexcited graphene quantum dots. Nano Lett. 2010, 10, 2679-2682.

17

Zhou, X. J.; Zhang, Y.; Wang, C.; Wu, X. C.; Yang, Y. Q.; Zheng, B.; Wu, H. X.; Guo, S. W.; Zhang, J. Y. Photo-Fenton reaction of graphene oxide: A new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 2012, 6, 6592-6599.

18

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203-212.

19

Ritter, K. A.; Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature materials 2009, 8, 235-242.

20

El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5, 829-834.

21

Sherry, L. J.; Chang, S. -H.; Schatz, G. C.; Van Duyne, R. P.; Wiley, B. J.; Xia, Y. N. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005, 5, 2034-2038.

22

Abdelsalam, M. E.; Mahajan, S.; Bartlett, P. N.; Baumberg, J. J.; Russell, A. E. SERS at structured palladium and platinum surfaces. J. Am. Chem. Soc. 2007, 129, 7399-7406.

23

Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.

24

Lee, M. -K.; Kim, T. G.; Kim, W.; Sung, Y. -M. Surface plasmon resonance (SPR) electron and energy transfer in noble metal-zinc oxide composite nanocrystals. J. Phys. Chem. C 2008, 112, 10079-10082.

25

Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601-626.

26

Mao, X. W.; Tian, D. M.; Li, H. B. p-Sulfonated calix[6]arene modified graphene as a "turn on" fluorescent probe for L-carnitine in living cells. Chem. Commun. 2012, 48, 4851-4853.

27

Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 2013, 7, 1239-1245.

28

Qin, X. Y.; Lu, W. B.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles-reduced graphene oxide nanocomposites for glucose detection. Catal. Sci. Technol. 2013, 3, 1027-1035.

29

Zheng, X. T.; Than, A.; Ananthanaraya, A.; Kim, D. -H.; Chen, P. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano 2013, 7, 6278-6286.

30

Ryu, S.; Lee, K.; Hong, S. H.; Lee, H. Facile method to sort graphene quantum dots by size through ammonium sulfate addition. RSC Adv. 2014, 4, 56848-56852.

31

Shin, H. -J.; Choi, W. M.; Choi, D.; Han, G. H.; Yoon, S. -M.; Park, H. -K.; Kim, S. -W.; Jin, Y. W.; Lee, S. Y.; Kim, J. M. et al. Control of electronic structure of graphene by various dopants and their effects on a nanogenerator. J. Am. Chem. Soc. 2010, 132, 15603-15609.

32

Güeneş, F.; Shin, H. -J.; Biswas, C.; Han, G. H.; Kim, E. S.; Chae, S. J.; Choi, J. -Y.; Lee, Y. H. Layer-by-layer doping of few-layer graphene film. ACS Nano 2010, 4, 4595-4600.

33

Schmidbaur, H.; Schier, A. A briefing on aurophilicity. Chem. Soc. Rev. 2008, 37, 1931-1951.

34

Schmidbaur, H.; Schier, A. Aurophilic interactions as a subject of current research: An up-date. Chem. Soc. Rev. 2012, 41, 370-412.

35

Palaniselvam, T.; Valappil, M. O.; Illathvalappil, R.; Kurungot, S. Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy Environ. Sci. 2014, 7, 1059-1067.

36

Wang, P.; Liu, Z. -G.; Chen, X.; Meng, F. -L.; Liu, J. -H.; Huang, X. -J. UV irradiation synthesis of an Au-graphene nanocomposite with enhanced electrochemical sensing properties. J. Mater. Chem. A 2013, 1, 9189-9195.

37

Kim, J. K.; Park, M. J.; Kim, S. J.; Wang, D. H.; Cho, S. P.; Bae, S.; Park, J. H.; Hong, B. H. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells. ACS Nano 2013, 7, 7207-7212.

38

Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145-152.

39

Boyen, H. -G.; Kästle, G.; Weigl, F.; Koslowski, B.; Dietrich, C.; Ziemann, P.; Spatz, J. P.; Riethmüller, S.; Hartmann, C.; Möller, M. et al. Oxidation-resistant gold-55 clusters. Science 2002, 297, 1533-1536.

40

Moon, G. -H.; Park, Y.; Kim, W.; Choi, W. Photochemical loading of metal nanoparticles on reduced graphene oxide sheets using phosphotungstate. Carbon 2011, 49, 3454-3462.

41

Some, S.; Kim, Y.; Yoon, Y.; Yoo, H.; Lee, S.; Park, Y.; Lee, H. High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci. Rep. 2013, 3, 1929.

42

Park, B.; Kim, S. J.; Lim, J.; Some, S.; Park, J. -E.; Kim, S. -J.; Kim, C.; Lee, T. J.; Jun, S. C. Tunable wide blue photoluminescence with europium decorated graphene. J. Mater. Chem. C 2015, 3, 4030-4038.

43

Feng, X. M.; Hu, J. Q.; Chen, X. H.; Xie, J. S.; Liu, Y. Y. Synthesis and electron transfer property of sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle heterojunctions. J. Phys. D: Appl. Phys. 2009, 42, 042001.

44

Si, Y. C.; Samulski, E. T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20, 6792-6797.

45

Cheng, H. H.; Zhao, Y.; Fan, Y. Q.; Xie, X. J.; Qu, L. T.; Shi, G. Q. Graphene-quantum-dot assembled nanotubes: A new platform for efficient Raman enhancement. ACS Nano 2012, 6, 2237-2244.

46

Zhang, H.; Chen, S.; Quan, X.; Yu, H. T.; Zhao, H. M. In situ controllable growth of noble metal nanodot on graphene sheet. J. Mater. Chem. 2011, 21, 12986-12990.

47

Eda, G.; Lin, Y. -Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. -A.; Chen, I. S.; Chen, C. -W.; Chhowalla, M. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 2010, 22, 505-509.

48

Subrahmanyam, K. S.; Kumar, P.; Nag, A.; Rao, C. N. R. Blue light emitting graphene-based materials and their use in generating white light. Solid State Commun. 2010, 150, 1774-1777.

49

He, Y. Q.; Liu, S. P.; Kong, L.; Liu, Z. F. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2005, 61, 2861-2866.

50

Link, S.; El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212-4217.

51

Bai, J. -M.; Zhang, L.; Liang, R. -P.; Qiu, J. -D. Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing. Chem. —Eur. J. 2013, 19, 3822-3826.

52

Gan, Z. X.; Wu, X. L.; Zhou, G. X.; Shen, J. C.; Chu, P. K. Is there real upconversion photoluminescence from graphene quantum dots? Adv. Opt. Mater. 2013, 1, 554-558.

53

Lan, N. T.; Chi, D. T.; Dinh, N. X.; Hung, N. D.; Lan, H.; Tuan, P. A.; Thang, L. H.; Trung, N. N.; Hoa, N. Q.; Huy, T. Q. et al. Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization. J. Alloy. Compd. 2014, 615, 843-848.

54

Xin, G. Q.; Meng, Y.; Ma, Y. F.; Ho, D.; Kim, N.; Cho, S. M.; Chae, H. Tunable photoluminescence of graphene oxide from near-ultraviolet to blue. Mater. Lett. 2012, 74, 71-73.

55

Wei, H.; Xu, H. X. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale 2013, 5, 10794-10805.

56

Neogi, A.; Karna, S.; Shah, R.; Phillipose, U.; Perez, J.; Shimada, R.; Wang, Z. M. Surface plasmon enhancement of broadband photoluminescence emission from graphene oxide. Nanoscale 2014, 6, 11310-11315.

57

Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419-422.

58

Pardo, A.; Reyman, D.; Poyato, J. M. L.; Medina, F. Some β-carboline derivatives as fluorescence standards. J. Lumines. 1992, 51, 269-274.

59

Li, L. -L.; Ji, J.; Fei, R.; Wang, C. -Z.; Lu, Q.; Zhang, J. -R.; Jiang, L. -P.; Zhu, J. -J. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 2012, 22, 2971-2979.

60

Zhu, S. J.; Tang, S. J.; Zhang, J. H.; Yang, B. Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun. 2012, 48, 4527-4539.

61

Schaeffer, N.; Tan, B.; Dickinson, C.; Rosseinsky, M. J.; Laromaine, A.; McComb, D. W.; Stevens, M. M.; Wang, Y. Q.; Petit, L.; Barentin, C. et al. Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range. Chem. Commun. 2008, 3986-3988.

62

Mei, Q. S.; Zhang, K.; Guan, G. J.; Liu, B. H.; Wang, S. H.; Zhang, Z. P. Highly efficient photoluminescent graphene oxide with tunable surface properties. Chem. Commun. 2010, 46, 7319-7321.

File
nr-9-6-1866_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 November 2015
Revised: 18 March 2016
Accepted: 21 March 2016
Published: 29 April 2016
Issue date: June 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was partially supported by the Priority Research Centers Program (No. 2009-0093823), the Basic Science Research Program (No. 2013063062), the Korean Government (MSIP) (No. 2015R1A5A1037668) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST).

Return