Journal Home > Volume 9 , Issue 6

The oxygen evolution reaction (OER) is a pivotal process for water-splitting and many other energy technologies involving oxygen electrodes. Herein, a new synthesis strategy is proposed to prepare OER catalysts based on a simple yet flexible in situ decomposition of Co-based acetate hydroxide metal-organic frameworks (MOFs). This process allows straightforward fabrication of various 2D hydroxide ultrathin nanosheets (UNSs) with excellent component controllability. The as-obtained Co-based hydroxide UNSs demonstrate superior catalytic activity for the OER due to the exposure of numerous active sites. In particular, the CoNi hydroxide UNSs exhibit low overpotentials (η) of 324 and 372 mV at current densities of 10 and 100 mA·cm–2, respectively; a large turnover frequency (TOF) of 0.16 s–1 at η = 380 mV; and a small Tafel slope of 33 mV·dec–1 in an alkaline environment. Importantly, these values are superior to those of the state-of-theart IrO2 commercial electrocatalyst. This facile strategy enables the exploration of more efficient and economic OER electrocatalysts with various constituents and opens a promising avenue for large-scale fabrication of functional nanocatalysts for use in clean energy technologies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction

Show Author's information Kai He1Zhen Cao2Ruirui Liu2Ya Miao2Houyi Ma1Yi Ding2( )
Key Laboratory of Colloid and Interface Chemistry of State Education MinistrySchool of Chemistry and Chemical Engineering, Shandong UniversityJinan250100China
Tianjin Key Laboratory of Advanced Functional Porous MaterialsSchool of Materials Science and Engineering, Tianjin University of TechnologyTianjin300384China

Abstract

The oxygen evolution reaction (OER) is a pivotal process for water-splitting and many other energy technologies involving oxygen electrodes. Herein, a new synthesis strategy is proposed to prepare OER catalysts based on a simple yet flexible in situ decomposition of Co-based acetate hydroxide metal-organic frameworks (MOFs). This process allows straightforward fabrication of various 2D hydroxide ultrathin nanosheets (UNSs) with excellent component controllability. The as-obtained Co-based hydroxide UNSs demonstrate superior catalytic activity for the OER due to the exposure of numerous active sites. In particular, the CoNi hydroxide UNSs exhibit low overpotentials (η) of 324 and 372 mV at current densities of 10 and 100 mA·cm–2, respectively; a large turnover frequency (TOF) of 0.16 s–1 at η = 380 mV; and a small Tafel slope of 33 mV·dec–1 in an alkaline environment. Importantly, these values are superior to those of the state-of-theart IrO2 commercial electrocatalyst. This facile strategy enables the exploration of more efficient and economic OER electrocatalysts with various constituents and opens a promising avenue for large-scale fabrication of functional nanocatalysts for use in clean energy technologies.

Keywords: electrocatalyst, oxygen evolution reaction, ultrathin nanosheets, metal-organic frameworks (MOFs), in situ decomposition

References(65)

1

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

2

Trancik, J. E. Renewable energy: Back the renewables boom. Nature 2014, 507, 300–302.

3

Gong, M.; Wang, D. -Y.; Chen, C. -C.; Hwang, B. -J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

4

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

5

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

6

Liu, E. Z.; Qi, L. L.; Bian, J. J.; Chen, Y. H.; Hu, X. Y.; Fan, J.; Liu, H. C.; Zhu, C. J.; Wang, Q. P. A facile strategy to fabricate plasmonic Cu modified TiO2 nano-flower films for photocatalytic reduction of CO2 to methanol. Mater. Res. Bull. 2015, 68, 203–209.

7

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

8

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

9

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

10

Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 2009, 38, 109–114.

11

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

12

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Let. 2012, 3, 399–404.

13

Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713–725.

14

Jang, D. M.; Kwak, I. H.; Kwon, E. L.; Jung, C. S.; Im, H. S.; Park, K.; Park, J. Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution. J. Phys. Chem. C 2015, 119, 1921–1927.

15

Chen, D. J.; Chen, C.; Baiyee, Z. M.; Shao, Z. P.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015, 115, 9869–9921.

16

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

17

Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.

18

Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.

19

Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

20

Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 2015, 137, 5590–5595.

21

Chen, R.; Wang, H. -Y.; Miao, J. W.; Yang, H. B.; Liu, B. A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core–shell nanowires. Nano Energy 2015, 11, 333–340.

22

Lv, X. M.; Zhu, Y. H.; Jiang, H. L.; Yang, X. L.; Liu, Y. Y.; Su, Y. H.; Huang, J. F.; Yao, Y. F.; Li, C. Z. Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Trans. 2015, 44, 4148–4154.

23

Liu, X. J.; Chang, Z.; Luo, L.; Xu, T. H.; Lei, X. D.; Liu, J. F.; Sun, X. M. Hierarchical ZnxCo3–xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 2014, 26, 1889–1895.

24

Wang, Y. C.; Jiang, K.; Zhang, H.; Zhou, T.; Wang, J. W.; Wei, W.; Yang, Z. Q.; Sun, X. H.; Cai, W. -B.; Zheng, G. F. Bio-inspired leaf-mimicking nanosheet/nanotube heterostructure as a highly efficient oxygen evolution catalyst. Adv. Sci. 2015, 2, doi: 10.1002/advs.201500003.

25

Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni–Co double hydroxides nanocages. Adv. Energy Mater. 2015, 5, 1401880.

26

Ni, B.; Wang, X. Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation. Chem. Sci. 2015, 6, 3572–3576.

27

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

28

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

29

Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.

30

Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Piao, J. Y.; Yao, T.; Wu, C. Z.; Hu, S. L.; Wei, S. Q. et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 2012, 3, 1057.

31

Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. 2015, 127, 7507–7512.

32

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

33

Zhu, J. B.; Bai, L. F.; Sun, Y. F.; Zhang, X. D.; Li, Q. Y.; Cao, B. X.; Yan, W. S.; Xie, Y. Topochemical transformation route to atomically thick Co3O4 nanosheets realizing enhanced lithium storage performance. Nanoscale 2013, 5, 5241–5246.

34

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

35

Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

36

Long, X.; Xiao, S.; Wang, Z. L.; Zheng, X. L.; Yang, S. H. Co intake mediated formation of ultrathin nanosheets of transition metal LDH—An advanced electrocatalyst for oxygen evolution reaction. Chem. Commun. 2015, 51, 1120–1123.

37

Corma, A.; García, H.; Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655.

38

Férey, G.; Serre, C.; Devic, T.; Maurin, G.; Jobic, H.; Llewellyn, P. L.; De Weireld, G.; Vimont, A.; Daturi, M.; Chang, J. -S. Why hybrid porous solids capture greenhouse gases? Chem. Soc. Rev. 2011, 40, 550–562.

39

Wang, X.; Zhao, S.; Zhang, Y. B.; Wang, Z.; Feng, J.; Song, S. Y.; Zhang, H. J. CeO2 nanowires self-inserted into porous Co3O4 frameworks as high-performance "noble metal free" hetero-catalysts. Chem. Sci. 2016, 7, 1109–1114.

40

Song, X. -Z.; Song, S. -Y.; Zhao, S. -N.; Hao, Z. -M.; Zhu, M.; Meng, X.; Wu, L. -L.; Zhang, H. -J. Single-crystal-to-single-crystal transformation of a europium(Ⅲ) metal–organic framework producing a multi-responsive luminescent sensor. Adv. Funct. Mater. 2014, 24, 4034–4041.

41

Kim, M.; Cahill, J. F.; Fei, H. H.; Prather, K. A.; Cohen, S. M. Postsynthetic ligand and cation exchange in robust metal–organic frameworks. J. Am. Chem. Soc. 2012, 134, 18082–18088.

42

Kim, M.; Cahill, J. F.; Su, Y. X.; Prather, K. A.; Cohen, S. M. Postsynthetic ligand exchange as a route to functionalization of "inert" metal-organic frameworks. Chem. Sci. 2012, 3, 126–130.

43

He, Y. -P.; Tan, Y. -X.; Zhang, J. Guest inducing fluorescence switching in lanthanide-tris((4-carboxyl)phenylduryl)amine frameworks integrating porosity and flexibility. J. Mater. Chem. C 2014, 2, 4436–4441.

44

Sun, D. R.; Sun, F. X.; Deng, X. Y.; Li, Z. H. Mixed-metal strategy on metal–organic frameworks (MOFs) for functionalities expansion: Co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74. Inorg. Chem. 2015, 54, 8639–8643.

45

Fu, H. -R.; Xu, Z. -X.; Zhang, J. Water-stable metal–organic frameworks for fast and high dichromate trapping via single-crystal-to-single-crystal ion exchange. Chem. Mater. 2015, 27, 205–210.

46

Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421–1427.

47

Jiang, J.; Zhang, A. L.; Li, L. L.; Ai, L. H. Nickel–cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J. Power Sources 2015, 278, 445–451.

48

Manivasakan, P.; Ramasamy, P.; Kim, J. Use of urchin-like NixCo3–xO4 hierarchical nanostructures based on non-precious metals as bifunctional electrocatalysts for anion-exchange membrane alkaline alcohol fuel cells. Nanoscale 2014, 6, 9665–9672.

49

Prabu, M.; Ketpang, K.; Shanmugam, S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Nanoscale 2014, 6, 3173–3181.

50

Sayeed, M. A.; Herd, T.; O'Mullane, A. P. Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 991–999.

51

Du, W. M.; Wang, Z. Y.; Zhu, Z. Q.; Hu, S.; Zhu, X. Y.; Shi, Y. F.; Pang, H.; Qian, X. F. Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. J. Mater. Chem. A 2014, 2, 9613–9619.

52

Zhang, H.; Qiao, H.; Wang, H. Y.; Zhou, N.; Chen, J. J.; Tang, Y. G.; Li, J. S.; Huang, C. H. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery. Nanoscale 2014, 6, 10235–10242.

53

Li, Y. G.; Hasin, P.; Wu, Y. Y. NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926–1929.

54

Sun, Y. F.; Gao, S.; Lei, F. C.; Liu, J. W.; Liang, L.; Xie, Y. Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts. Chem. Sci. 2014, 5, 3976–3982.

55

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

56

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

57

Baird, T.; Campbell, K. C.; Holliman, P. J.; Hoyle, R. W.; Stirling, D.; Williams, B. P.; Morris, M. Characterisation of cobalt-zinc hydroxycarbonates and their products of decomposition. J. Mater. Chem. 1997, 7, 319–330.

58

Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.

59

Huang, L.; Chen, D. C.; Ding, Y.; Feng, S.; Wang, Z. L.; Liu, M. L. Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139.

60

Wei, T. -Y.; Chen, C. -H.; Chien, H. -C.; Lu, S. -Y.; Hu, C. -C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 2010, 22, 347–351.

61

Gao, G. X.; Wu, H. B.; Ding, S. J.; Lou, X. W. Preparation of carbon-coated NiCo2O4@SnO2 hetero-nanostructures and their reversible lithium storage properties. Small 2015, 11, 432–436.

62

Liu, X. H.; Ma, R. Z.; Bando, Y.; Sasaki, T. A general strategy to layered transition-metal hydroxide nanocones: Tuning the composition for high electrochemical performance. Adv. Mater. 2012, 24, 2148–2153.

63

Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

64

Song, F.; Hu, X. L. Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.

65

Wang, H. -Y.; Hsu, Y. -Y.; Chen, R.; Chan, T. -S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni–Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.

File
nr-9-6-1856_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 February 2016
Revised: 13 March 2016
Accepted: 16 March 2016
Published: 28 April 2016
Issue date: June 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This research was supported by the National Basic Research Program of China (No. 2012CB932800), the National Natural Science Foundation of China (No. 51171092), and the Ph.D. Programs Foundation of the Chinese Ministry of Education (No. 20120042110031). Y. D. also acknowledges the Fundamental Research Funds of Shandong University and Tianjin Municipal Science and Technology Commission to sponsor our research.

Return