Journal Home > Volume 9 , Issue 6

Development of high-performance oxygen reduction reaction (ORR) catalysts is crucial to improve proton exchange membrane fuel cells. Herein, a multicomponent nanoporous PdCuTiAl (np-PdCuTiAl) electrocatalyst has been synthesized by a facile one-step dealloying strategy. The np-PdCuTiAl catalyst exhibits a three-dimensional bicontinuous interpenetrating ligament/channel structure with an ultrafine length scale of ~3.7 nm. The half-wave potential of np PdCuTiAl is 0.873 V vs. RHE, more positive than those of PdC (0.756 V vs. RHE) and PtC (0.864 V vs. RHE) catalysts. The np-PdCuTiAl alloy shows a 4-electron reaction pathway with similar Tafel slopes to PtC. Remarkably, the half-wave potential shows a negative shift of only 12 mV for np-PdCuTiAl in the presence of methanol, and this negative shift is much lower than those of the PdC (50 mV) and PtC (165 mV) catalysts. The enhanced ORR activity of np-PdCuTiAl has been further rationalized through density functional theory calculations.


menu
Abstract
Full text
Outline
About this article

Multicomponent platinum-free nanoporous Pd-based alloy as an active and methanol-tolerant electrocatalyst for the oxygen reduction reaction

Show Author's information Xiaoting Chen1,§Conghui Si1,§Ying Wang1Yi Ding2Zhonghua Zhang1( )
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)School of Materials Science and Engineering, Shandong University, Jingshi Road 17923Jinan250061China
School of Materials Science and EngineeringTianjin University of Technology, 391 Binshui Xidao, Xiqing DistrictTianjin300384China

§ These authors contributed equally to this work.

Abstract

Development of high-performance oxygen reduction reaction (ORR) catalysts is crucial to improve proton exchange membrane fuel cells. Herein, a multicomponent nanoporous PdCuTiAl (np-PdCuTiAl) electrocatalyst has been synthesized by a facile one-step dealloying strategy. The np-PdCuTiAl catalyst exhibits a three-dimensional bicontinuous interpenetrating ligament/channel structure with an ultrafine length scale of ~3.7 nm. The half-wave potential of np PdCuTiAl is 0.873 V vs. RHE, more positive than those of PdC (0.756 V vs. RHE) and PtC (0.864 V vs. RHE) catalysts. The np-PdCuTiAl alloy shows a 4-electron reaction pathway with similar Tafel slopes to PtC. Remarkably, the half-wave potential shows a negative shift of only 12 mV for np-PdCuTiAl in the presence of methanol, and this negative shift is much lower than those of the PdC (50 mV) and PtC (165 mV) catalysts. The enhanced ORR activity of np-PdCuTiAl has been further rationalized through density functional theory calculations.

Keywords: oxygen reduction reaction, dealloying, electrocatalyst, methanol tolerance, direct methanol fuel cells, nanoporous alloys

References(70)

1

Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel cells—Fundamentals and applications. Fuel Cells 2001, 1, 5-39.

DOI
2

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43-51.

3

Blomen, L. J. M. J.; Mugerwa, M. N. Fuel Cell Systems; Springer Science & Business Media: New York, 1993.

DOI
4

Zhang, G. Q.; Xia, B. Y.; Wang, X.; Lou, X. W. Strongly coupled NiCo2O4-rGO hybrid nanosheets as a methanol-tolerant electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2014, 26, 2408-2412.

5

Kamarudin, S. K.; Achmad, F.; Daud, W. R. W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int. J. Hydrogen Energ. 2009, 34, 6902-6916.

6

Wang, Z. -B.; Zhao, C. -R.; Shi, P. -F.; Yang, Y. -S.; Yu, Z. -B.; Wang, W. -K.; Yin, G. -P. Effect of a carbon support containing large mesopores on the performance of a Pt-Ru-Ni/C catalyst for direct methanol fuel cells. J. Phys. Chem. C 2010, 114, 672-677.

7

Tiwari, J. N.; Tiwari, R. N.; Singh, G.; Kim, K. S. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energ. 2013, 2, 553-578.

8

Mathiyarasu, J.; Phani, K. L. N. Carbon-supported palladium-cobalt-noble metal (Au, Ag, Pt) nanocatalysts as methanol tolerant oxygen-reduction cathode materials in DMFCs. J. Electrochem. Soc. 2007, 154, B1100-B1105.

9

Ren, X. M.; Wilson, M. S.; Gottesfeld, S. High performance direct methanol polymer electrolyte fuel cells. J. Electrochem. Soc. 1996, 143, L12-L15.

10

Ruban, A. V.; Skriver, H. L.; Nørskov, J. K. Surface segregation energies in transition-metal alloys. Phys. Rev. B 1999, 59, 15990-16000.

11

Fernández, J. L.; Raghuveer, V.; Manthiram, A.; Bard, A. J. Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells. J. Am. Chem. Soc. 2005, 127, 13100-13101.

12

Yang, J.; Tian, C. G.; Wang, L.; Fu, H. G. An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J. Mater. Chem. 2011, 21, 3384-3390.

13

Yang, R. Z.; Bian, W. Y.; Strasser, P.; Toney, M. F. Dealloyed PdCu3 thin film electrocatalysts for oxygen reduction reaction. J. Power Sources 2013, 222, 169-176.

14

Shao, M. H.; Huang, T.; Liu, P.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Adzic, R. R. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir 2006, 22, 10409-10415.

15

Liu, H.; Manthiram, A. Controlled synthesis and characterization of carbon-supported Pd4Co nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells. Energy Environ. Sci. 2009, 2, 124-132.

16

Liu, L. C.; Samjeske, G.; Nagamatsu, S. -I.; Sekizawa, O.; Nagasawa, K.; Takao, S.; Imaizumi, Y.; Yamamoto, T.; Uruga, T.; Iwasawa, Y. Dependences of the oxygen reduction reaction activity of Pd-Co/C and Pd-Ni/C alloy electrocatalysts on the nanoparticle size and lattice constant. Top. Catal. 2014, 57, 595-606.

17

Shao, M. H.; Liu, P.; Zhang, J. L.; Adzic, R. Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J. Phys. Chem. B 2007, 111, 6772-6775.

18

Song, S. Q.; Wang, Y.; Tsiakaras, P.; Shen, P. K. Direct alcohol fuel cells: A novel non-platinum and alcohol inert ORR electrocatalyst. Appl. Catal. B 2008, 78, 381-387.

19

Tarasevich, M. R.; Zhutaeva, G. V.; Bogdanovskaya, V. A.; Radina, M. V.; Ehrenburg, M. R.; Chalykh, A. E. Oxygen kinetics and mechanism at electrocatalysts on the base of palladium-iron system. Electrochim. Acta 2007, 52, 5108-5118.

20

Zhang, Z. H.; Zhang, C.; Sun, J. Z.; Kou, T. Y.; Bai, Q. G.; Wang, Y.; Ding, Y. Ultrafine nanoporous PdFe/Fe3O4 catalysts with doubly enhanced activities towards electro-oxidation of methanol and ethanol in alkaline media. J. Mater. Chem. A 2013, 1, 3620-3628.

21

Shao, M. -H.; Sasaki, K.; Adzic, R. R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2006, 128, 3526-3527.

22

Zhu, F. C.; Ma, G. S.; Bai, Z. C.; Hang, R. Q.; Tang, B.; Zhang, Z. H.; Wang, X. G. High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol, ethanol and formic acid electro-oxidation. J. Power Sources 2013, 242, 610-620.

23

Shao, M. H.; Smith, B. H.; Guerrero, S.; Protsailo, L.; Su, D.; Kaneko, K.; Odell, J. H.; Humbert, M. P.; Sasaki, K.; Marzullo, J. et al. Core-shell catalysts consisting of nanoporous cores for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2013, 15, 15078-15090.

24

Lee, K.; Savadogo, O.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K. -I. Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel cells. J. Electrochem. Soc. 2006, 153, A20-A24.

25

Snyder, J.; Fujita, T.; Chen, M. W.; Erlebacher, J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat. Mater. 2010, 9, 904-907.

26

Liu, Y. Q.; Xu, C. X. Nanoporous PdTi alloys as non-platinum oxygen-reduction reaction electrocatalysts with enhanced activity and durability. ChemSusChem 2013, 6, 78-84.

27

Mohanraju, K.; Cindrella, L. Impact of alloying and lattice strain on ORR activity of Pt and Pd based ternary alloys with Fe and Co for proton exchange membrane fuel cell applications. RSC Adv. 2014, 4, 11939-11947.

28

Raghuveer, V.; Manthiram, A.; Bard, A. J. Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. B 2005, 109, 22909-22912.

29

Zhang, H.; Hao, Q.; Geng, H. R.; Xu, C. X. Nanoporous PdCu alloys as highly active and methanol-tolerant oxygen reduction electrocatalysts. Int. J. Hydrogen Energ. 2013, 38, 10029-10038.

30

Xu, C. X.; Liu, Y. Q.; Hao, Q.; Duan, H. M. Nanoporous PdNi alloys as highly active and methanol-tolerant electrocatalysts towards oxygen reduction reaction. J. Mater. Chem. A 2013, 1, 13542-13548.

31

Li, Z. S.; Ji, S.; Pollet, B. G.; Shen, P. K. A Co3W3C promoted Pd catalyst exhibiting competitive performance over Pt/C catalysts towards the oxygen reduction reaction. Chem. Commun. 2014, 50, 566-568.

32

Mittermeier, T.; Weiß, A.; Hasché, F.; Gasteiger, H. A. Activity, stability and degradation of carbon supported palladium (Pd/C) fuel cell electrocatalysts for the oxygen reduction. ECS Trans. 2015, 69, 303-313.

33

Dong, H. -Q.; Chen, Y. -Y.; Han, M.; Li, S. -L.; Zhang, J.; Li, J. -S.; Lan, Y. -Q.; Dai, Z. -H.; Bao, J. -C. Synergistic effect of mesoporous Mn2O3-supported Pd nanoparticle catalysts for electrocatalytic oxygen reduction reaction with enhanced performance in alkaline medium. J. Mater. Chem. A 2014, 2, 1272-1276.

34

Wang, X. G.; Frenzel, J.; Wang, W. M.; Ji, H.; Qi, Z.; Zhang, Z. H.; Eggeler, G. Length-scale modulated and electrocatalytic activity enhanced nanoporous gold by doping. J. Phys. Chem. C 2011, 115, 4456-4465.

35

Qian, L. H.; Chen, M. W. Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 2007, 91, 083105.

36

Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450-453.

37

Qi, Z.; Geng, H. R.; Wang, X. G.; Zhao, C. C.; Ji, H.; Zhang, C.; Xu, J. L.; Zhang, Z. H. Novel nanocrystalline PdNi alloy catalyst for methanol and ethanol electro-oxidation in alkaline media. J. Power Sources 2011, 196, 5823-5828.

38

Xu, C. X.; Liu, Y. Q.; Wang, J. P.; Geng, H. R.; Qiu, H. J. Nanoporous PdCu alloy for formic acid electro-oxidation. J. Power Sources 2012, 199, 124-131.

39

Xu, C. X.; Zhang, Y.; Wang, L. Q.; Xu, L. Q.; Bian, X. F.; Ma, H. Y.; Ding, Y. Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction. Chem. Mater. 2009, 21, 3110-3116.

40

Chen, W.; Dalach, P.; Schneider, W. F.; Wolverton, C. Interplay between subsurface ordering, surface segregation, and adsorption on Pt-Ti (111) near-surface alloys. Langmuir 2012, 28, 4683-4693.

41

Zhang, H.; Jin, M. S.; Xiong, Y. J.; Lim, B.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 2013, 46, 1783-1794.

42

Lang, X. Y.; Han, G. F.; Xiao, B. B.; Gu, L.; Yang, Z. Z.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Jiang, Q. Mesostructured intermetallic compounds of platinum and non-transition metals for enhanced electrocatalysis of oxygen reduction reaction. Adv. Funct. Mater. 2015, 25, 230-237.

43

Wang, Y.; Wang, Y. Z.; Zhang, C.; Kou, T. Y.; Zhang, Z. H. Tuning the ligament/channel size of nanoporous copper by temperature control. CrystEngComm 2012, 14, 8352-8356.

44

Wang, R. Y.; Xu, C. X.; Bi, X. X.; Ding, Y. Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ. Sci 2012, 5, 5281-5286.

45

Wang, Y.; Jia, L. L.; Dai, W. L.; Wang, W. M.; Fan, K. N. Theoretical study about adsorption of atomic oxygen on unmodified and I-modified Ag (100) surface. J. Chem. Phys. 2003, 118, 11210-11216.

46

Zhang, L.; Lee, K.; Zhang, J. J. The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts. Electrochim. Acta 2007, 52, 3088-3094.

47

Chen, X. T.; Jiang, Y. Y.; Sun, J. Z.; Jin, C. H.; Zhang, Z. H. Highly active nanoporous Pt-based alloy as anode and cathode catalyst for direct methanol fuel cells. J. Power Sources 2014, 267, 212-218.

48

Neergat, M.; Rahul, R. Unsupported Cu-Pt core-shell nanoparticles: Oxygen reduction reaction (ORR) catalyst with better activity and reduced precious metal content. J. Electrochem. Soc. 2012, 159, F234-F241.

49

Myers, J. M.; Bomberger, H. B.; Froes, F. H. Corrosion behavior and use of titanium and its alloys. JOM 1984, 36, 50-60.

50

Sun, J. Z.; Wang, Y. Z.; Zhang, C.; Kou, T. Y.; Zhang, Z. H. Anodization driven enhancement of catalytic activity of Pd towards electro-oxidation of methanol, ethanol and formic acid. Electrochem. Commun. 2012, 21, 42-45.

51

Zhang, J. T.; Huang, M. H.; Ma, H. Y.; Tian, F.; Pan, W.; Chen, S. H. High catalytic activity of nanostructured Pd thin films electrochemically deposited on polycrystalline Pt and Au substrates towards electro-oxidation of methanol. Electrochem. Commun. 2007, 9, 1298-1304.

52

Chen, L. Y.; Guo, H.; Fujita, T.; Hirata, A.; Zhang, W.; Inoue, A.; Chen, M. W. Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions. Adv. Funct. Mater. 2011, 21, 4364-4370.

53

Pan, W.; Zhang, X. K.; Ma, H. Y.; Zhang, J. T. Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles. J. Phys. Chem. C 2008, 112, 2456-2461.

54

Wang, X. G.; Wang, W. M.; Qi, Z.; Zhao, C. C.; Ji, H.; Zhang, Z. H. Novel Raney-like nanoporous Pd catalyst with superior electrocatalytic activity towards ethanol electro-oxidation. Int. J. Hydrogen Energ. 2012, 37, 2579-2587.

55

Trasatti, S.; Petrii, O. A. Real surface area measurements in electrochemistry. J. Electroanal. Chem. 1992, 327, 353-376.

56

Yu, J. S.; Ding, Y.; Xu, C. X.; Inoue, A.; Sakurai, T.; Chen, M. W. Nanoporous metals by dealloying multicomponent metallic glasses. Chem. Mater. 2008, 20, 4548-4550.

57

Xu, C. X.; Liu, A. H.; Qiu, H. J.; Liu, Y. Q. Nanoporous PdCu alloy with enhanced electrocatalytic performance. Electrochem. Commun. 2011, 13, 766-769.

58

Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Meng, Y. F.; Ge, X. B.; Chen, M. W.; Ding, Y. Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res. 2014, 7, 1569-1580.

59

Stamenković, V.; Schmidt, T. J.; Ross, P. N.; Marković, N. M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 2002, 106, 11970-11979.

60

Holewinski, A.; Linic, S. Elementary mechanisms in electrocatalysis: Revisiting the ORR tafel slope. J. Electrochem. Soc. 2012, 159, H864-H870.

61

Rahul, R.; Singh, R. K.; Neergat, M. Effect of oxidative heat-treatment on electrochemical properties and oxygen reduction reaction (ORR) activity of Pd-Co alloy catalysts. J. Electroanal. Chem. 2014, 712, 223-229.

62

Kongkanand, A.; Kuwabata, S.; Girishkumar, G.; Kamat, P. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir 2006, 22, 2392-2396.

63

Li, X. W.; Huang, Q. H.; Zou, Z. Q.; Xia, B. J.; Yang, H. Low temperature preparation of carbon-supported PdCo alloy electrocatalysts for methanol-tolerant oxygen reduction reaction. Electrochim. Acta 2008, 53, 6662-6667.

64

Neergat, M.; Gunasekar, V.; Rahul, R. Carbon-supported Pd-Fe electrocatalysts for oxygen reduction reaction (ORR) and their methanol tolerance. J. Electroanal. Chem. 2011, 658, 25-32.

65

Fouda-Onana, F.; Savadogo, O. Study of O2 and OH adsorption energies on Pd-Cu alloys surface with a quantum chemistry approach. Electrochim. Acta 2009, 54, 1769-1776.

66

Gobal, F.; Arab, R.; Nahali, M. A comparative DFT study of atomic and molecular oxygen adsorption on neutral and negatively charged PdxCu3-x (x = 0-3) nano-clusters. J. Mol. Struct. : THEOCHEM 2010, 959, 15-21.

67

Sha, Y.; Yu, T. H.; Merinov, B. V.; Goddard, W. A., Ⅲ. DFT prediction of oxygen reduction reaction on palladium-copper alloy surfaces. ACS Catal. 2014, 4, 1189-1197.

68

Li, X. Y.; Yang, H. M. Pd hybridizing ZnO/kaolinite nanocomposites: Synthesis, microstructure, and enhanced photocatalytic property. Appl. Clay Sci. 2014, 100, 43-49.

69

Xu, D.; Liu, Z. P.; Yang, H. Z.; Liu, Q. S.; Zhang, J.; Fang, J. Y.; Zou, S. Z.; Sun, K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angew. Chem., Int. Ed. 2009, 48, 4217-4221.

70

Ou, L. H.; Chen, S. L. Comparative study of oxygen reduction reaction mechanisms on the Pd(111) and Pt(111) surfaces in acid medium by DFT. J. Phys. Chem. C 2013, 117, 1342-1349.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 August 2015
Revised: 14 March 2016
Accepted: 16 March 2016
Published: 28 April 2016
Issue date: June 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors gratefully acknowledge financial support by National Basic Research Program of China (973, No. 2012CB932800), National Natural Science Foundation of China (No. 51371106), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120131110017), Cross Disciplinary Training Project of Shandong University (No. 2014JC004), and Young Tip-top Talent Support Project (the Organization Department of the Central Committee of the CPC). Z. H. Z. also acknowledges the support from the Alexander von Humboldt Foundation, Germany.

Return