Journal Home > Volume 9 , Issue 6

Chemical vapor deposition (CVD) is typically used for large-scale graphene synthesis for practical applications. However, the inferior electronic properties of CVD graphene are one of the key problems to be solved. Therefore, we present a detailed study on the electronic properties of high-quality single-crystal monolayer graphene. The graphene is grown via CVD on copper, by using a cold-wall reactor, and then transferred to Si/SiO2. Our low-temperature magneto-transport data demonstrate that the characteristics of the single-crystal CVD graphene samples are superior to those of polycrystalline graphene and have a quality which is comparable to that of exfoliated graphene on Si/SiO2. The Dirac point in our best samples occurs at back-gate voltages lower than 10 V, and a maximum mobility of 11, 000 cm2/(V·s) is attained. More than 12 flat and discernible half-integer quantum Hall plateaus occur under a high magnetic field on both the electron and hole sides of the Dirac point. At a low magnetic field, the magnetoresistance exhibits a weak localization peak. Using the theory of McCann et al., we obtain inelastic scattering lengths of > 1 μm, even at the charge neutrality point of the samples.


menu
Abstract
Full text
Outline
About this article

Low-temperature quantum transport in CVD-grown single crystal graphene

Show Author's information Shaohua Xiang1Vaidotas Miseikis2Luca Planat1Stefano Guiducci1Stefano Roddaro1Camilla Coletti2Fabio Beltram1,2Stefan Heun1( )
NESTIstituto Nanoscienze—CNR and Scuola Normale SuperiorePiazza San Silvestro 1256127Pisa, Italy
Center for Nanotechnology Innovation @NESTIstituto Italiano di TecnologiaPiazza San Silvestro 1256127Pisa, Italy

Abstract

Chemical vapor deposition (CVD) is typically used for large-scale graphene synthesis for practical applications. However, the inferior electronic properties of CVD graphene are one of the key problems to be solved. Therefore, we present a detailed study on the electronic properties of high-quality single-crystal monolayer graphene. The graphene is grown via CVD on copper, by using a cold-wall reactor, and then transferred to Si/SiO2. Our low-temperature magneto-transport data demonstrate that the characteristics of the single-crystal CVD graphene samples are superior to those of polycrystalline graphene and have a quality which is comparable to that of exfoliated graphene on Si/SiO2. The Dirac point in our best samples occurs at back-gate voltages lower than 10 V, and a maximum mobility of 11, 000 cm2/(V·s) is attained. More than 12 flat and discernible half-integer quantum Hall plateaus occur under a high magnetic field on both the electron and hole sides of the Dirac point. At a low magnetic field, the magnetoresistance exhibits a weak localization peak. Using the theory of McCann et al., we obtain inelastic scattering lengths of > 1 μm, even at the charge neutrality point of the samples.

Keywords: high-quality chemical vapor deposition (CVD)-graphene, low-temperature magnetotransport, quantum Hall effect, weak localization

References(44)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.

3

de Heer, W. A.; Berger, C.; Wu, X. S.; First, P. N.; Conrad, E. H.; Li, X. B.; Li, T. B.; Sprinkle, M.; Hass, J.; Sadowski, M. L. et al. Epitaxial graphene. Solid State Commun. 2007, 143, 92-100.

4

Kageshima, H.; Hibino, H.; Nagase, M.; Yamaguchi, H. Theoretical study of epitaxial graphene growth on SiC(0001) surfaces. Appl. Phys. Express 2009, 2, 065502.

5

Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhrl, J. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203-207.

6

Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. -S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.

7

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.

8

Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268-4272.

9

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

10

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30-35.

11

Yu, Q. K.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J. F.; Su, Z. H.; Cao, H. L.; Liu, Z. H.; Pandey, D.; Wei, D. G. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 2011, 10, 443-449.

12

Miseikis, V.; Convertino, D.; Mishra, N.; Gemmi, M.; Mashoff, T.; Heun, S.; Haghighian, N.; Bisio, F.; Canepa, M.; Piazza, V. et al. Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor. 2D Mater. 2015, 2, 014006.

13

Kim, K.; Lee, Z.; Regan, W.; Kisielowski, C.; Crommie, M. F.; Zettl, A. Grain boundary mapping in polycrystalline graphene. ACS Nano 2011, 5, 2142-2146.

14

Grüneis, A.; Vyalikh, D. V. Tunable hybridization between electronic states of graphene and a metal surface. Phys. Rev. B 2008, 77, 193401.

15

Petrone, N.; Dean, C. R.; Meric, I.; van der Zande, A. M.; Huang, P. Y.; Wang, L.; Muller, D.; Shepard, K. L.; Hone, J. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 2012, 12, 2751-2756.

16

Wang, Y.; Zheng, Y.; Xu, X. F.; Dubuisson, E.; Bao, Q. L.; Lu, J.; Lo, K. P. Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano 2011, 5, 9927-9933.

17

Liang, X. L.; Sperling, B. A.; Calizo, I.; Cheng, G. J.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H. L.; Li, Q. L. et al. Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144-9153.

18

Ando, T.; Nakanishi, T.; Saito, R. Berry's phase and absence of back scattering in carbon nanotubes. J. Phys. Soc. Jpn. 1998, 67, 2857-2862.

19

Peres, N. M. R.; Guinea, F.; Castro Neto, A. H. Electronic properties of two-dimensional carbon. Ann. Phys. 2006, 321, 1559-1567.

20

Zhang, Y. B.; Tan, Y. -W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201-204.

21

Dean, C. R.; Young, A. F.; Cadden-Zimansky, P.; Wang, L.; Ren, H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Hone, J.; Shepard, K. L. Multicomponent fractional quantum Hall effect in graphene. Nat. Phys. 2011, 7, 693-696.

22

Cao, H. L.; Yu, Q. K.; Jauregui, L. A.; Tian, J.; Wu, W.; Liu, Z.; Jalilian, R.; Benjamin, D. K.; Jiang, Z.; Bao, J. et al. Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization. App. Phys. Lett. 2010, 96, 122106.

23

Jauregui, L. A.; Cao, H. L.; Wu, W.; Yu, Q. K.; Chen, Y. P. Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition. Solid State Commun. 2011, 151, 1100-1104.

24

Massicotte, M.; Yu, V.; Whiteway, E.; Vatnik, D.; Hilke, M. Quantum Hall effect in fractal graphene: Growth and properties of graphlocons. Nanotechnology 2013, 24, 325601.

25

Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Ponomarenko, L. A.; Jiang, D.; Geim, A. K. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 2006, 97, 016801.

26

Wu, X. S.; Li, X. B.; Song, Z. M.; Berger, C.; de Heer, W. A. Weak antilocalization in epitaxial graphene: Evidence for chiral electrons. Phys. Rev. Lett. 2007, 98, 136801.

27

Gorbachev, R. V.; Tikhonenko, F. V.; Mayorov, A. S.; Horsell, D. W.; Savchenko, A. K. Weak localization in bilayer graphene. Phys. Rev. Lett. 2007, 98, 176805.

28

Tikhonenko, F. V.; Horsell, D. W.; Gorbachev, R. V.; Savchenko, A. K. Weak localization in graphene flakes. Phys. Rev. Lett. 2008, 100, 056802.

29

Ki, D. -K.; Jeong, D.; Choi, J. -H.; Lee, H. -J.; Park, K. -S. Inelastic scattering in a monolayer graphene sheet: A weak-localization study. Phys. Rev. B 2008, 78, 125409.

30

Tikhonenko, F. V.; Kozikov, A. A.; Savchenko, A. K.; Gorbachev, R. V. Transition between electron localization and antilocalization in graphene. Phys. Rev. Lett. 2009, 103, 226801.

31

Lara-Avila, S.; Tzalenchuk, A.; Kubatkin, S.; Yakimova, R.; Janssen, T. J. B. M.; Cedergren, K.; Bergsten, T.; Fal'ko, V. Disordered Fermi liquid in epitaxial graphene from quantum transport measurements. Phys. Rev. Lett. 2011, 107, 166602.

32

Baker, A. M. R.; Alexander-Webber, J. A.; Altebaeumer, T.; Janssen, T. J. B. M.; Tzalenchuk, A.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R.; Lin, C. -T.; Li, L. -J. et al. Weak localization scattering lengths in epitaxial, and CVD graphene. Phys. Rev. B 2012, 86, 235441.

33

Iagallo, A.; Tanabe, S.; Roddaro, S.; Takamura, M.; Hibino, H.; Heun, S. Tuning of quantum interference in top-gated graphene on SiC. Phys. Rev. B 2013, 88, 235406.

34
Whiteway, E.; Yu, V.; Lefebvre, J.; Gagnon, R.; Hilke, M. Magneto-Transport of Large CVD-Grown Graphene. 2011, arXiv: 1011.5712. arXiv. org e-Print archive. http://arxiv.org/abs/1011.5712 (accessed Jan 18, 2016).
35

Wang, S. N.; Suzuki, S.; Furukawa, K.; Orofeo, C. M.; Takamura, M.; Hibino, H. Selective charge doping of chemical vapor deposition-grown graphene by interface modification. Appl. Phys. Lett. 2013, 103, 253116.

36

Chen, J. -H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206-209.

37

Abrahams, E.; Anderson, P. W.; Licciardello, D. C.; Ramakrishnan, T. V. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 1979, 42, 673-676.

38

Branchaud, S.; Kam, A.; Zawadzki, P.; Peeters, F. M.; Sachrajda, A. S. Transport detection of quantum Hall fluctuations in graphene. Phys. Rev. B 2010, 81, 121406.

39

Suzuura H.; Ando, T. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice. Phys. Rev. Lett. 2002, 89, 266603.

40

McCann, E.; Kechedzhi, K.; Fal'ko, V. I.; Suzuura, H.; Ando, T.; Altshuler, B. L. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 2006, 97, 146805.

41

Fal'ko, V. I.; Kechedzhi, K.; McCann, E.; Altshuler, B. L.; Suzuura, H.; Ando, T. Weak localization in graphene. Solid State Commun. 2007, 143, 33-38.

42

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191-1196.

43

Uren, M. J.; Davies, R. A.; Kaveh, M.; Pepper, M. Magnetic delocalisation of a two-dimensional electron gas and the quantum law of electron-electron scattering. J. Phys. C 1981, 14, L395.

44

Taboryski, R.; Lindelof, P. E. Weak localisation and electron-electron interactions in modulation-doped GaAs/AlGaAs heterostructures. Semicond. Sci. Technol. 1990, 5, 933-946.

Publication history
Copyright
Acknowledgements

Publication history

Received: 18 January 2016
Revised: 01 March 2016
Accepted: 16 March 2016
Published: 28 April 2016
Issue date: June 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors acknowledge financial support from the Italian Ministry of Foreign Affairs (Ministero degli Affari Esteri, Direzione Generale per la Promozione del Sistema Paese) in the framework of the agreement on scientific collaborations with Canada (Quebec) and Poland; and from the CNR in the framework of the agreement on scientific collaborations between CNR and JSPS (Japan), CNRS (France), and RFBR (Russia). We also acknowledge funding from the European Union Seventh Framework Programme under grant agreement no. 604391 Graphene Flagship. S. G. acknowledges support by Fondazione Silvio Tronchetti Provera.

Return