Journal Home > Volume 9 , Issue 6

Graphene/Ni(110) has been studied by time-resolved X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure. The C 1s core level shows a splitting typical of periodically rippled interfaces. The analysis of the C K-edge reveals that the interface states previously observed for graphene/Ni(111) are suppressed in graphene/Ni(110). This suppression is due to the reduced hybridization of the Dirac-cone electrons in graphene with the d-bands of the (110)-oriented nickel contacts. Our results show that, contrary to commensurate growth of graphene on Ni(111), epitaxially grown graphene on Ni(110) behaves as a quasi-freestanding sheet, as the lattice mismatch gives rise to a moiré reconstruction.


menu
Abstract
Full text
Outline
About this article

Quasi-freestanding graphene on Ni(110): A graphene/metal contact with suppressed interface states

Show Author's information Antonio Politano( )
Department of PhysicsUniversity of Calabriavia Ponte Bucci31/C, I-87036Rende (CS), Italy

Abstract

Graphene/Ni(110) has been studied by time-resolved X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure. The C 1s core level shows a splitting typical of periodically rippled interfaces. The analysis of the C K-edge reveals that the interface states previously observed for graphene/Ni(111) are suppressed in graphene/Ni(110). This suppression is due to the reduced hybridization of the Dirac-cone electrons in graphene with the d-bands of the (110)-oriented nickel contacts. Our results show that, contrary to commensurate growth of graphene on Ni(111), epitaxially grown graphene on Ni(110) behaves as a quasi-freestanding sheet, as the lattice mismatch gives rise to a moiré reconstruction.

Keywords: graphene, X-ray photoelectron spectroscopy, electronic properties, synchrotron radiation, near-edge X-ray photoelectron spectroscopy

References(40)

1

Garcia-Lekue, A.; Balashov, T.; Olle, M.; Ceballos, G.; Arnau, A.; Gambardella, P.; Sanchez-Portal, D.; Mugarza, A. Spin-dependent electron scattering at graphene edges on Ni(111). Phys. Rev. Lett. 2014, 112, 066802.

2

Zhang, Y. F.; Gao, T.; Xie, S. B.; Dai, B. Y.; Fu, L.; Gao, Y. B.; Chen, Y. B.; Liu, M. X.; Liu, Z. F. Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: A scanning tunneling microscopy study. Nano Res. 2012, 5, 402-411.

3

Garlow, J. A.; Barrett, L. K.; Wu, L. J.; Kisslinger, K.; Zhu, Y. M.; Pulecio, J. F. Large-area growth of turbostratic graphene on Ni(111) via physical vapor deposition. Sci. Rep. 2016, 6, 19804.

4

Politano, A.; Chiarello, G. Probing Young's modulus and Poisson's ratio in graphene/metal interfaces and graphite: A comparative study. Nano Res. 2015, 8, 1847-1856.

5

Tamtögl, A.; Bahn, E.; Zhu, J. D.; Fouquet, P.; Ellis, J.; Allison, W. Graphene on Ni(111): Electronic corrugation and dynamics from helium atom scattering. J. Phys. Chem. C 2015, 119, 25983-25990.

6

Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509-516.

7

Benayad, A.; Li, X. -S. Carbon free nickel subsurface layer tessellating graphene on Ni(111) surface. J. Phys. Chem. C 2013, 117, 4727-4733.

8

Dahal, A.; Batzill, M. Graphene-nickel interfaces: A review. Nanoscale 2014, 6, 2548-2562.

9

Böttcher, S.; Weser, M.; Dedkov, Y.; Horn, K.; Voloshina, E. N.; Paulus, B. Graphene on ferromagnetic surfaces and its functionalization with water and ammonia. Nanoscale Res. Lett. 2011, 6, 214.

10

Yu, S. D.; Fonin, M. Electronic and magnetic properties of the graphene-ferromagnet interface. New J. Phys. 2010, 12, 125004.

11

Bertoni, G.; Calmels, L.; Altibelli, A.; Serin, V. First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface. Phys. Rev. B 2005, 71, 075402.

12

Cupolillo, A.; Ligato, N.; Caputi, L. S. Two-dimensional character of the interface-π plasmon in epitaxial graphene on Ni(111). Carbon 2012, 50, 2588-2591.

13

Voloshina, E. N.; Generalov, A.; Weser, M.; Böttcher, S.; Horn, K.; Dedkov, Y. S. Structural and electronic properties of the graphene/Al/Ni(111) intercalation system. New J. Phys. 2011, 13, 113028.

14

Ligato, N.; Cupolillo, A.; Caputi, L. S. Study of the intercalation of graphene on Ni(111) with Cs atoms: Towards the quasi-free graphene. Thin Solid Films 2013, 543, 59-62.

15

Shikin, A. M.; Adamchuk, V. K.; Rieder, K. H. Formation of quasi-free graphene on the Ni(111) surface with intercalated Cu, Ag, and Au layers. Phys. Solid State 2009, 51, 2390-2400.

16

Bianchini, F.; Patera, L. L.; Peressi, M.; Africh, C.; Comelli, G. Atomic scale identification of coexisting graphene structures on Ni(111). J. Phys. Chem. Lett. 2014, 5, 467-473.

17

Cupolillo, A.; Ligato, N.; Caputi, L. S. Plasmon dispersion in quasi-freestanding graphene on Ni(111). Appl. Phys. Lett. 2013, 102, 111609-111604.

18

Addou, R.; Dahal, A.; Sutter, P.; Batzill, M. Monolayer graphene growth on Ni(111) by low temperature chemical vapor deposition. Appl. Phys. Lett. 2012, 100, 21601.

19

Zhao, W.; Kozlov, S. M.; Höfert, O.; Gotterbarm, K.; Lorenz, M. P. A.; Viñes, F.; Papp, C.; Görling, A.; Steinrück, H. -P. Graphene on Ni(111): Coexistence of different surface structures. J. Phys. Chem. Lett. 2011, 2, 759-764.

20

Odahara, G.; Otani, S.; Oshima, C.; Suzuki, M.; Yasue, T.; Koshikawa, T. Macroscopic single-domain graphene sheet on Ni(111). Surf. Interface Anal. 2011, 43, 1491-1493.

21

Mittendorfer, F.; Garhofer, A.; Redinger, J.; Klimeš, J.; Harl, J.; Kresse, G. Graphene on Ni(111): Strong interaction and weak adsorption. Phys. Rev. B 2011, 84, 201401.

22

Ligato, N.; Caputi, L. S.; Cupolillo, A. Oxygen intercalation at the graphene/Ni(111) interface: Evidences of non-metal islands underneath graphene layer. Carbon 2016, 100, 258- 264.

23

Allard, A.; Wirtz, L. Graphene on metallic substrates: Suppression of the Kohn anomalies in the phonon dispersion. Nano Lett. 2010, 10, 4335-4340.

24

Usachov, D.; Dobrotvorskii, A. M.; Varykhalov, A.; Rader, O.; Gudat, W.; Shikin, A. M.; Adamchuk, V. K. Experimental and theoretical study of the morphology of commensurate and incommensurate graphene layers on Ni single-crystal surfaces. Phys. Rev. B 2008, 78, 085403.

25

Ligato, N.; Cupolillo, A.; Sindona, A.; Riccardi, P.; Pisarra, M.; Caputi, L. S. A comparative study of the plasmonic properties of graphene on lattice-matched and lattice-mismatched Ni surfaces. Surf. Sci. 2014, 626, 40-43.

26

Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B 2008, 78, 073401.

27

Venugopal, A.; Colombo, L.; Vogel, E. M. Contact resistance in few and multilayer graphene devices. Appl. Phys. Lett. 2010, 96, 013512.

28

Grüneis, A.; Kummer, K.; Vyalikh, D. V. Dynamics of graphene growth on a metal surface: A time-dependent photoemission study. New J. Phys. 2009, 11, 073050.

29

N'Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-dimensional Ir cluster lattice on a graphene Moiré on Ir(111). Phys. Rev. Lett. 2006, 97, 215501.

30

Voloshina, E. N.; Dedkov, Y. S.; Torbrügge, S.; Thissen, A.; Fonin, M. Graphene on Rh(111): Scanning tunneling and atomic force microscopies studies. Appl. Phys. Lett. 2012, 100, 241606.

31

Cortés, R.; Acharya, D. P.; Ciobanu, C. V.; Sutter, E.; Sutter, P. Graphene on Ru(0001) Moiré corrugation studied by scanning tunneling microscopy on Au/Graphene/Ru(0001) heterostructures. J. Phys. Chem. C 2013, 117, 20675-20680.

32

Larciprete, R.; Colonna, S.; Ronci, F.; Flammini, R.; Lacovig, P.; Apostol, N.; Politano, A.; Feulner, P.; Menzel, D.; Lizzit, S. Self-assembly of graphene nanoblisters sealed to a bare metal surface. Nano Lett. 2016, 16, 1808-1817.

33

Najafi, E.; Cruz, D. H.; Obst, M.; Hitchcock, A. P.; Douhard, B.; Pireaux, J. -J.; Felten, A. Polarization dependence of the C 1s X-ray absorption spectra of individual multi-walled carbon nanotubes. Small 2008, 4, 2279-2285.

34

Bittencourt, C.; Hitchock, A. P.; Ke, X. X.; Van Tendeloo, G.; Ewels, C. P.; Guttmann, P. X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge. Beilstein J. Nanotechnol. 2012, 3, 345-350.

35

Fischer, D. A.; Wentzcovitch, R. M.; Carr, R. G.; Continenza, A.; Freeman, A. J. Graphitic interlayer states: A carbon K near-edge X-ray-absorption fine-structure study. Phys. Rev. B 1991, 44, 1427-1429.

36

Politano, A.; de Juan, F.; Chiarello, G.; Fertig, H. A. Emergence of an out-of-plane optical phonon (ZO) Kohn anomaly in quasifreestanding epitaxial graphene. Phys. Rev. Lett. 2015, 115, 075504.

37

Politano, A.; Marino, A. R.; Formoso, V.; Chiarello, G. Evidence of Kohn anomalies in quasi-freestanding graphene on Pt(111). Carbon 2012, 50, 734-736.

38

Politano, A.; Marino, A. R.; Formoso, V.; Farías, D.; Miranda, R.; Chiarello, G. Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111). Phys. Rev. B 2011, 84, 033401.

39

Diaconescu, B.; Pohl, K.; Vattuone, L.; Savio, L.; Hofmann, P.; Silkin, V. M.; Pitarke, J. M.; Chulkov, E. V.; Echenique, P. M.; Farías, D. et al. Low-energy acoustic plasmons at metal surfaces. Nature 2007, 448, 57-59.

40

Cupolillo, A.; Ligato, N.; Caputi, L. Low energy two-dimensional plasmon in epitaxial graphene on Ni (111). Surf. Sci. 2013, 608, 88-91.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 February 2016
Revised: 05 March 2016
Accepted: 14 March 2016
Published: 19 April 2016
Issue date: June 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The author thank Elettra-Sincrotrone Trieste S.C.p.A. for financial support. Silvano Lizzit and Paolo Lacovig are also acknowledged for support during the beamtime at the SuperESCA beamline. The author also thanks Anna Cupolillo for helpful discussions. Gennaro Chiarello is acknowledged for helpful discussions and for having provided the sample.

Return