Journal Home > Volume 9 , Issue 6

In this work, we present a new versatile strategy to prepare noble metal (Au, Ag and Cu) nanoclusters on TiO2 nanosheets in large scales with exposed (001) facets with controlled size, crystalline interface, and loading amount. By precise in situ calcination, the metal (M = Au, Ag, and Cu) nanocrystals with controllable size and better crystalline interface with the TiO2 support have been prepared. The potential application of the as-prepared Au, Ag, and Cu nanoclusters on TiO2 nanosheets as potential heterogeneous catalysts for organic synthesis, such as catalytic reduction of 4-nitrophenol to 4-aminophenol, has been demonstrated. After calcination, Au, Ag, and Cu nanocrystals were found to be proficient cocatalysts for photocatalytic H2 evolution, particularly the Au cocatalyst. Based on precise high-resolution transmission electron microscopy (HRTEM) and inductively coupled plasma optical emission spectrometry (ICP-OES) analyses, the flexible control of their size and loading amount as well as their intimate contact with the TiO2 nanosheet enhanced the photocatalytic H2 evolution activity and the sensitivity of the photocurrent response of the film. Furthermore, this aqueous-directed synthesis of metal nanoclusters on a support will generate further interest in the field of nanocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications

Show Author's information Anwer ShoaibMuwei JiHongmei QianJiajia LiuMeng XuJiatao Zhang( )
Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081China

Abstract

In this work, we present a new versatile strategy to prepare noble metal (Au, Ag and Cu) nanoclusters on TiO2 nanosheets in large scales with exposed (001) facets with controlled size, crystalline interface, and loading amount. By precise in situ calcination, the metal (M = Au, Ag, and Cu) nanocrystals with controllable size and better crystalline interface with the TiO2 support have been prepared. The potential application of the as-prepared Au, Ag, and Cu nanoclusters on TiO2 nanosheets as potential heterogeneous catalysts for organic synthesis, such as catalytic reduction of 4-nitrophenol to 4-aminophenol, has been demonstrated. After calcination, Au, Ag, and Cu nanocrystals were found to be proficient cocatalysts for photocatalytic H2 evolution, particularly the Au cocatalyst. Based on precise high-resolution transmission electron microscopy (HRTEM) and inductively coupled plasma optical emission spectrometry (ICP-OES) analyses, the flexible control of their size and loading amount as well as their intimate contact with the TiO2 nanosheet enhanced the photocatalytic H2 evolution activity and the sensitivity of the photocurrent response of the film. Furthermore, this aqueous-directed synthesis of metal nanoclusters on a support will generate further interest in the field of nanocatalysis.

Keywords: noble metal nanocluster, organic synthesis catalyst, cocatayst, photocatalyst hydrogen production, photocurrent response

References(60)

1

Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647-1650.

2

Häkkinen, H.; Moseler, M.; Landman, U. Bonding in Cu, Ag, and Au clusters: Relativistic effects, trends, and surprises. Phys. Rev. Lett. 2002, 89, 033401.

3

Chen, S. F.; Li, J. P.; Qian, K.; Xu, W. P.; Lu, Y.; Huang, W. X.; Yu, S. H. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res. 2010, 3, 244-255.

4

DuChene, J. S.; Sweeny, B. C.; Johnston-Peck, A. C.; Su, D.; Stach, E. A.; Wei, W. D. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 2014, 53, 7887-7891.

5

Chen, M. S.; Goodman, D. W. Catalytically active gold: From nanoparticles to ultrathin films. Acc. Chem. Res. 2006, 39, 739-746.

6

Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688-1691.

7

Du, M. M.; Sun, D. H.; Yang, H. W.; Huang, J. L.; Jing, X. L.; Odoom-Wubah, T.; Wang, H. T.; Jia, L. S.; Li, Q. B. Influence of Au particle size on Au/TiO2 catalysts for CO oxidation. J. Phys. Chem. C 2014, 118, 19150-19157.

8

Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096-2126.

9

Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749-1758.

10

Claus, P.; Brückner, A.; Mohr, C.; Hofmeister, H. Supported gold nanoparticles from quantum dot to mesoscopic size scale: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J. Am. Chem. Soc. 2000, 122, 11430-11439.

11

Qi, D. Y.; Yan, X. F.; Wang, L. Z.; Zhang, J. L. Plasmon- free SERS self-monitoring of catalysis reaction on Au nanoclusters/TiO2 photonic microarray. Chem. Commun. 2015, 51, 8813-8816.

12

Lin, Z. J.; Wang, X. H.; Liu, J.; Tian, Z. Y.; Dai, L. C.; He, B. B.; Han, C.; Wu, Y. Q.; Zeng, Z. G.; Hu, Z. Y. On the role of localized surface plasmon resonance in UV-Vis light irradiated Au/TiO2 photocatalysis systems: Pros and cons. Nanoscale 2015, 7, 4114-4123.

13

Zhang, X.; Liu, Y.; Lee, S. T.; Yang, S. H.; Kang, Z. H. Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 1409-1419.

14

Yang, J. H.; Wang, D.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900-1909.

15

Shen, J. F.; Shi, M.; Yan, B.; Ma, H. W.; Li, N.; Ye, M. X. Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites. Nano Res. 2011, 4, 795-806.

16

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972-974.

17

Liu, Y. C.; Gu, Y. S.; Yan, X. Q.; Kang, Z.; Lu, S. N.; Sun, Y. H.; Zhang, Y. Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res. 2015, 8, 2891-2900.

18

Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002, 418, 964-967.

19

Sajan, C. P.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G.; Cao, S. W. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3-27.

20

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

21

Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152-3153.

22

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638-641.

23

Xing, M. -Y.; Yang, B. -X.; Yu, H.; Tian, B. -Z.; Bagwasi, S.; Zhang, J. -L.; Gong, X. -Q. Enhanced photocatalysis by Au nanoparticle loading on TiO2 single-crystal (001) and (110) facets. J. Phys. Chem. Lett. 2013, 4, 3910-3917.

24

Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev. 2007, 107, 2891-2959.

25

Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water- splitting using TiO2 for hydrogen production. Renew. Sustain. Energ. Rev. 2007, 11, 401-425.

26

Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35-54.

27

Ismail, A. A.; Bahnemann, D. W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. Sol. Energy Mater. Sol. Cells 2014, 128, 85-101.

28

Zhang, Z. Y.; Wang, Z.; Cao, S. -W.; Xue, C. Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J. Phys. Chem. C 2013, 117, 25939-25947.

29

Subramanian, V.; Wolf, E.; Kamat, P. V. Semiconductor- metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B 2001, 105, 11439-11446.

30

Pearson, A.; Zheng, H. D.; Kalantar-Zadeh, K.; Bhargava, S. K.; Bansal, V. Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-switchable reducing agent for enhanced visible and solar light photocatalysis. Langmuir 2012, 28, 14470-14475.

31

Yu, X. L.; Shavel, A.; An, X. Q.; Luo, Z. S.; Ibáñez, M.; Cabot, A. Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J. Am. Chem. Soc. 2014, 136, 9236-9239.

32

Kochuveedu, S. T.; Jang, Y. H.; Kim, D. H. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem. Soc. Rev. 2013, 42, 8467-8493.

33

Long, R.; Prezhdo, O. V. Instantaneous generation of charge- separated state on TiO2 surface sensitized with plasmonic nanoparticles. J. Am. Chem. Soc. 2014, 136, 4343-4354.

34

Chen, Y. S.; Choi, H.; Kamat, P. V. Metal-cluster-sensitized solar cells. A new class of thiolated gold sensitizers delivering efficiency greater than 2%. J. Am. Chem. Soc. 2013, 135, 8822-8825.

35

Xiao, F. X. Layer-by-layer self-assembly construction of highly ordered metal-TiO2 nanotube arrays heterostructures (M/TNTs, M = Au, Ag, Pt) with tunable catalytic activities. J. Phys. Chem. C 2012, 116, 16487-16498.

36

Delannoy, L.; Thrimurthulu, G.; Reddy, P. S.; Méthivier, C.; Nelayah, J.; Reddy, B. M.; Ricolleau, C.; Louis, C. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation. Phys. Chem. Chem. Phys. 2014, 16, 26514-26527.

37

Kisch, H.; Bahnemann, D. Best practice in photocatalysis: Comparing rates or apparent quantum yields? J. Phys. Chem. Lett. 2015, 6, 1907-1910.

38

Zhang, J. Y.; Wang, Y. H.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. G. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g‑C3N4 nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317-10324.

39

Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878- 10884.

40

Boehm, H. P. Functional groups on the surfaces of solids. Angew. Chem. , Int. Ed. 1966, 5, 533-544.

41

Sun, Y. G. Controlled synthesis of colloidal silver nanoparticles in organic solutions: Empirical rules for nucleation engineering. Chem. Soc. Rev. 2013, 42, 2497-2511.

42

Liu, Y. Z.; Sun, Y. G. Electron beam induced evolution in Au, Ag, and interfaced heterogeneous Au/Ag nanoparticles. Nanoscale 2015, 7, 13687-13693.

43

Ding, D. W.; Liu, K.; He, S. N.; Gao, C. B.; Yin, Y. D. Ligand-exchange assisted formation of Au/TiO2 schottky contact for visible-light photocatalysis. Nano Lett. 2014, 14, 6731-6736.

44

Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387-1392.

45

Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893-2939.

46

Zheng, D. J.; Pang, X. C.; Wang, M. Y.; He, Y. J.; Lin, C. J.; Lin, Z. Q. Unconventional route to hairy plasmonic/ semiconductor core/shell nanoparticles with precisely controlled dimensions and their use in solar energy conversion. Chem. Mater. 2015, 27, 5271-5278.

47

Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-921.

48

Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817-3823.

49

Buriak, J. M.; Kamat, P. V.; Schanze, K. S. Best practices for reporting on heterogeneous photocatalysis. ACS Appl. Mater. Interfaces 2014, 6, 11815-11816.

50

Subramanian, V.; Wolf, E. E.; Kamat, P. V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 2004, 126, 4943-4950.

51

Dang, X. N.; Qi, J. F.; Klug, M. T.; Chen, P. Y.; Yun, D. S.; Fang, N. X.; Hammond, P. T.; Belcher, A. M. Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells. Nano Lett. 2013, 13, 637-642.

52

Seh, Z. W.; Liu, S. H.; Low, M.; Zhang, S. Y.; Liu, Z. L.; Mlayah, A.; Han, M. Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 2012, 24, 2310-2314.

53

Liu, L. P.; Wang, G. M.; Li, Y.; Li, Y. D.; Zhang, J. Z. CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Res. 2011, 4, 249-258.

54

Chen, G.; Zhao, Y.; Shang, L.; Waterhouse, G. I. N.; Kang, X.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Recent advances in the synthesis, characterization and application of Zn+-containing heterogeneous catalysts. Adv. Sci. 2016, 1500424.

55

Lu, Q. P.; Lu, Z. D.; Lu, Y. Z.; Lv, L. F.; Ning, Y.; Yu, H. X.; Hou, Y. B.; Yin, Y. D. Photocatalytic synthesis and photovoltaic application of Ag-TiO2 nanorod composites. Nano Lett. 2013, 13, 5698-5702.

56

Bian, Z. F.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 2014, 136, 458-465.

57

Chen, H. J.; Liu, G.; Wang, L. Z. Switched photocurrent direction in Au/TiO2 bilayer thin films. Sci. Rep. 2015, 5, 10852.

58

Lee, J.; Mubeen, S.; Ji, X. L.; Stucky, G. D.; Moskovits, M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 2012, 12, 5014-5019.

59

Kamat, P. V. Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. J. Phys. Chem. Lett. 2012, 3, 663-672.

60

Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2. Sci. Rep. 2013, 3, 2849.

File
nr-9-6-1763_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 January 2016
Revised: 07 March 2016
Accepted: 08 March 2016
Published: 13 April 2016
Issue date: June 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21322105, 51372025 and 913233001), the Research Fund for the Doctoral Program of Higher Education of China (No. 2011101120016), and Program for New Century Excellent Talents in University (No. NCET-11-0793).

Return