Journal Home > Volume 9 , Issue 6

Liquid-phase exfoliation (LPE) is an attractive method for the scaling-up of exfoliated MoS2 sheets compared to chemical vapor deposition and mechanical cleavage. However, the MoS2 nanosheet yield from LPE is too small for practical applications. We report a facile method for the scaling-up of exfoliated MoS2 nanosheets using freeze-dried silk fibroin powders. Compared to MoS2 dispersion in the absence of silk fibroin powder, sonicated MoS2 dispersions with silk fibroin powder (MoS2/Silk dispersion) show noticeably higher exfoliated MoS2 nanosheet yields, with suspended MoS2 concentrations in MoS2/Silk dispersions sonicated for 2 and 5 h of 1.03 and 1.39 mg·mL–1, respectively. The MoS2 concentration in the MoS2/Silk dispersion after centrifugation above 10, 000 rpm is more than four times that without the silk fibroin. The size of the dispersed silk fibroin is controlled by the change of centrifugation rate, showing the removal of silk fibroin above tens of micrometers in size after centrifugation at 2, 000 rpm. Size-controlled silk fibroin biomolecules combined with MoS2 nanosheets are expected to increase the practical use of such materials in fields related to tissue engineering, biosensors and electrochemical electrodes. Atomic force microscopy and Raman spectroscopy provide the height of the MoS2 nanosheets spin-cast from MoS2 /Silk dispersions, showing thicknesses of 3–6 nm. X-ray photoelectron spectroscopy and X-ray diffraction indicate that the outermost surface layer of the hydrophobic MoS2 crystals interact with oxygen-containing functional groups that exist in the hydrophobic part of silk fibroins. The amphiphilic properties of silk fibroin combined with the MoS2 nanosheets stabilize dispersions by enhancing solvent-material interactions. The large quantities of exfoliated MoS2 nanosheets suspended in the as-synthesized dispersions can be utilized for the fabrication of vapor and electrochemical devices requiring high MoS2 nanosheets contents.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-concentration dispersions of exfoliated MoS2 sheets stabilized by freeze-dried silk fibroin powder

Show Author's information HeungBo SimJiYong LeeByeongho ParkSun Jun KimShinill KangWonHyoung Ryu( )Seong Chan Jun( )
School of Mechanical EngineeringYonsei University, Seoul, 120-749Republic of Korea

Abstract

Liquid-phase exfoliation (LPE) is an attractive method for the scaling-up of exfoliated MoS2 sheets compared to chemical vapor deposition and mechanical cleavage. However, the MoS2 nanosheet yield from LPE is too small for practical applications. We report a facile method for the scaling-up of exfoliated MoS2 nanosheets using freeze-dried silk fibroin powders. Compared to MoS2 dispersion in the absence of silk fibroin powder, sonicated MoS2 dispersions with silk fibroin powder (MoS2/Silk dispersion) show noticeably higher exfoliated MoS2 nanosheet yields, with suspended MoS2 concentrations in MoS2/Silk dispersions sonicated for 2 and 5 h of 1.03 and 1.39 mg·mL–1, respectively. The MoS2 concentration in the MoS2/Silk dispersion after centrifugation above 10, 000 rpm is more than four times that without the silk fibroin. The size of the dispersed silk fibroin is controlled by the change of centrifugation rate, showing the removal of silk fibroin above tens of micrometers in size after centrifugation at 2, 000 rpm. Size-controlled silk fibroin biomolecules combined with MoS2 nanosheets are expected to increase the practical use of such materials in fields related to tissue engineering, biosensors and electrochemical electrodes. Atomic force microscopy and Raman spectroscopy provide the height of the MoS2 nanosheets spin-cast from MoS2 /Silk dispersions, showing thicknesses of 3–6 nm. X-ray photoelectron spectroscopy and X-ray diffraction indicate that the outermost surface layer of the hydrophobic MoS2 crystals interact with oxygen-containing functional groups that exist in the hydrophobic part of silk fibroins. The amphiphilic properties of silk fibroin combined with the MoS2 nanosheets stabilize dispersions by enhancing solvent-material interactions. The large quantities of exfoliated MoS2 nanosheets suspended in the as-synthesized dispersions can be utilized for the fabrication of vapor and electrochemical devices requiring high MoS2 nanosheets contents.

Keywords: liquid-phase exfoliation, MoS2 nanosheet, freeze-dried silk fibroin powder, amount of suspended MoS2 sheet, stabilized dispersion

References(70)

1

Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.

2

Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.

3

Frey, G. L.; Reynolds, K. J.; Friend, R. H.; Cohen, H.; Feldman, Y. Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes. J. Am. Chem. Soc. 2003, 125, 5998-6007.

4

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.

5

Yao, Y. G.; Tolentino, L.; Yang, Z. Z.; Song, X. J.; Zhang, W.; Chen, Y. S.; Wong, C. P. High-concentration aqueous dispersions of MoS2. Adv. Funct. Mater. 2013, 23, 3577-3583.

6

O'Neill, A.; Khan, U.; Coleman, J. N. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 2012, 24, 2414-2421.

7

Bergin, S. D.; Sun, Z. Y.; Rickard, D.; Streich, P. V.; Hamilton, J. P.; Coleman, J. N. Multicomponent solubility parameters for single-walled carbon nanotube−solvent mixtures. ACS Nano 2009, 3, 2340-2350.

8

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563-568.

9

Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O'Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 2011, 23, 3944- 3948.

10
Howe, R. C.; Woodward, R. I.; Hu, G.; Yang, Z.; Kelleher, E. J.; Hasan, T. Surfactant-aided exfoliation of molydenum disulphide for ultrafast pulse generation through edge-state saturable absorption. 2015, arXiv: 1508.01631. arXiv. org e-Print archive. http://arxiv.org/pdf/1508.01631.pdf (accessed Dec 9, 2015).
11

Chen, X. J.; Boulos, R. A.; Eggers, P. K.; Raston, C. L. p-Phosphonic acid calix[8]arene assisted exfoliation and stabilization of 2D materials in water. Chem. Commun. 2012, 48, 11407-11409.

12

Yoon, S.; In, I. Role of poly(N-vinyl-2-pyrrolidone) as stabilizer for dispersion of graphene via hydrophobic interaction. J. Mater. Sci. 2011, 46, 1316-1321.

13

Lee, J. Y.; In, I. Enhanced solvent exfoliation of graphite to graphene dispersion in the presence of polymer additive. Chem. Lett. 2011, 40, 567-569.

14

Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327-331.

15

Zu, S.Z.; Han, B.H. Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: Formation of supramolecular hydrogel. J. Phys. Chem. C 2009, 113, 13651-13657.

16

Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63-67.

17

Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 2007, 101, 14507-14507.

18

Liu, C. -J.; Tai, S. -Y.; Chou, S. -W.; Yu, Y. -C.; Chang, K. -D.; Wang, S.; Chien, F. S. -S.; Lin, J. -Y.; Lin, T. -W. Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 21057-21064.

19

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

20

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

21

Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High- thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634-638.

22

Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826-4830.

23

Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856-5857.

24

Xu, S. J.; Yong, L.; Wu, P. Y. One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts. ACS Appl. Mater. Interfaces 2013, 5, 654-662.

25

Hardy, J. G.; Scheibel, T. R. Composite materials based on silk proteins. Prog. Polym. Sci. 2010, 35, 1093-1115.

26

Vepari, C.; Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991-1007.

27

Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X. Q.; Lovett, M. L.; Kaplan, D. L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612-1631.

28

Huang, L.; Li, C.; Yuan, W. J.; Shi, G. Q. Strong composite films with layered structures prepared by casting silk fibroin- graphene oxide hydrogels. Nanoscale 2013, 5, 3780-3786.

29

Singh, A.; Hede, S.; Sastry, M. Spider silk as an active scaffold in the assembly of gold nanoparticles and application of the gold-silk bioconjugate in vapor sensing. Small 2007, 3, 466-473.

30

Liang, B.; Fang, L.; Hu, Y. C.; Yang, G.; Zhu, Q.; Ye, X. S. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres. Nanoscale 2014, 6, 4264-4274.

31

Huemmerich, D.; Slotta, U.; Scheibel, T. Processing and modification of films made from recombinant spider silk proteins. Appl. Phys. A 2006, 82, 219-222.

32

Zhao, Y.; Chen, J.; Chou, A. H. K.; Li, G.; LeGeros, R. Z. Nonwoven silk fibroin net/nano-hydroxyapatite scaffold: Preparation and characterization. J. Biomed. Mater. Res. A 2009, 91A, 1140-1149.

33

Li, C. M.; Vepari, C.; Jin, H. -J.; Kim, H. J.; Kaplan, D. L. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3115-3124.

34

Yin, H. S.; Ai, S. Y.; Shi, W. J.; Zhu, L. S. A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensor. Actuat. B: Chem. 2009, 137, 747-753.

35

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963-8971.

36

Gao, D. Q.; Si, M. S.; Li, J. Y.; Zhang, J.; Zhang, Z. P.; Yang, Z. L.; Xue, D. S. Ferromagnetism in freestanding MoS2 nanosheets. Nanoscale Res. Lett. 2013, 8, 129.

37

Zhang, M.; Howe, R. C. T.; Woodward, R. I.; Kelleher, E. J. R.; Torrisi, F.; Hu, G. H.; Popov, S. V.; Taylor, J. R.; Hasan, T. Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er: Fiber laser. Nano Res. 2015, 8, 1522-1534.

38

Lefèvre, T.; Rousseau, M. -E.; Pézolet, M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J. 2007, 92, 2885-2895.

39

Sirichaisit, J.; Brookes, V. L.; Young, R. J.; Vollrath, F. Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules 2003, 4, 387-394.

40

Feng, X. -X.; Guo, Y. -H.; Chen, J. -Y.; Zhang, J. -C. Nano- TiO2 induced secondary structural transition of silk fibroin studied by two-dimensional Fourier-transform infrared correlation spectroscopy and Raman spectroscopy. J. Biomater. Sci. Polym. Ed. 2007, 18, 1443-1456.

41

Monti, P.; Freddi, G.; Bertoluzza, A.; Kasai, N.; Tsukada, M. Raman spectroscopic studies of silk fibroin from Bombyx mori. J. Raman Spectrosc. 1998, 29, 297-304.

DOI
42

Monti, P.; Taddei, P.; Freddi, G.; Asakura, T.; Tsukada, M. Raman spectroscopic characterization of Bombyx mori silk fibroin: Raman spectrum of Silk I. J. Raman Spectrosc. 2001, 32, 103-107.

43

Tamada, Y. New process to form a silk fibroin porous 3-D structure. Biomacromolecules 2005, 6, 3100-3106.

44

Altavilla, C.; Sarno, M.; Ciambelli, P. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M = Mo, W). Chem. Mater. 2011, 23, 3879-3885.

45

Yang, L.; Cui, X. D.; Zhang, J. Y.; Wang, K.; Shen, M.; Zeng, S. S.; Dayeh, S. A.; Feng, L.; Xiang, B. Lattice strain effects on the optical properties of MoS2 nanosheets. Sci. Rep. 2014, 4, 5649.

46

Liang, Y. L.; Yoo, H. D.; Li, Y. F.; Shuai, J.; Calderon, H. A.; Robles Hernandez, F. C.; Grabow, L. C.; Yao, Y. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 2015, 15, 2194-2202.

47

Wang, T. M.; Liu, W. M.; Tian, J. Preparation and characterization of gold/poly(vinyl alcohol)/MoS2 intercalation nanocomposite. J. Mater. Sci. : Mater. Electron. 2004, 15, 435-438.

48

Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145-152.

49

Larina, T. V.; Dovlitova, L. S.; Kaichev, V. V.; Malakhov, V. V.; Glazneva, T. S.; Paukshtis, E. A.; Bal'zhinimaev, B. S. Influence of the surface layer of hydrated silicon on the stabilization of Co2+ cations in Zr-Si fiberglass materials according to XPS, UV-Vis DRS, and differential dissolution phase analysis. RSC Adv. 2015, 5, 79898-79905.

50

Li, C. M.; Jin, H. -J.; Botsaris, G. D.; Kaplan, D. L. Silk apatite composites from electrospun fibers. J. Mater. Res. 2005, 20, 3374-3384.

51

Zhou, L.; Chen, X.; Dai, W. L.; Shao, Z. Z. X-ray photoelectron spectroscopic and Raman analysis of silk fibroin-Cu(Ⅱ) films. Biopolymers 2006, 82, 144-151.

52

Mou, Z. G.; Chen, X. Y.; Du, Y. K.; Wang, X. M.; Yang, P.; Wang, S. D. Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Appl. Surf. Sci. 2011, 258, 1704-1710.

53

Ma, X. L.; Cao, C. B.; Zhu, H. S. The biocompatibility of silk fibroin films containing sulfonated silk fibroin. J. Biomed. Mater. Res. B: Appl. Biomater. 2006, 78B, 89-96.

54

Bai, L. Q.; Zhu, L. J.; Min, S. J.; Liu, L.; Cai, Y. R.; Yao, J. M. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide. Appl. Surf. Sci. 2008, 254, 2988-2995.

55

Yun, J. -M.; Noh, Y. -J.; Yeo, J. -S.; Go, Y. -J.; Na, S. -I.; Jeong, H. -G.; Kim, J.; Lee, S.; Kim, S. -S.; Koo, H. Y. et al. Efficient work-function engineering of solution-processed MoS2 thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells. J. Mater. Chem. C 2013, 1, 3777-3783.

56

Kato, S.; Ishikawa, R.; Kubo, Y.; Shirai, H.; Ueno, K. Efficient organic photovoltaic cells using hole-transporting MoO3 buffer layers converted from solution-processed MoS2 films. Jpn. J. Appl. Phys. 2011, 50, 071604.

57

Ma, L.; Chen, W. -X.; Xu, Z. -D.; Xia, J. -B.; Li, X. Carbon nanotubes coated with tubular MoS2 layers prepared by hydrothermal reaction. Nanotechnology 2006, 17, 571-574.

58

Yang, X.; Fu, W. F.; Liu, W. Q.; Hong, J. H.; Cai, Y.; Jin, C. H.; Xu, M. S.; Wang, H. B.; Yang, D. R.; Chen, H. Z. Engineering crystalline structures of two-dimensional MoS2 sheets for high-performance organic solar cells. J. Mater. Chem. A 2014, 2, 7727-7733.

59

Weng, Q. H.; Wang, X.; Wang, X. B.; Zhang, C.; Jiang, X. F.; Bando, Y.; Golberg, D. Supercapacitive energy storage performance of molybdenum disulfide nanosheets wrapped with microporous carbons. J. Mater. Chem. A 2015, 3, 3097-3102.

60

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium- sulfur batteries. Nat. Commun. 2015, 6, 5682.

61

Hansen, C. M. Hansen Solubility Parameters: A User's Handbook, 2nd ed.; CRC Press: Boca Raton, 2007.

DOI
62

Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X. S.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593-1597.

63

Um, I. C.; Kweon, H. Y.; Lee, K. G.; Park, Y. H. The role of formic acid in solution stability and crystallization of silk protein polymer. Int. J. Biol. Macromol. 2003, 33, 203-213.

64

Krapf, L.; Dezi, M.; Reichstein, W.; Köhler, J.; Oellerich, S. AFM characterization of spin-coated multilayered dry lipid films prepared from aqueous vesicle suspensions. Coll. Surf. B: Biointerf. 2011, 82, 25-32.

65

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

66

Chakraborty, B.; Matte, H. S. S. R.; Sood, A. K.; Rao, C. N. R. Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 2013, 44, 92-96.

67

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.

68

Mitoraj, M. P.; Michalak, A. On the asymmetry in molybdenum-oxygen bonding in the MoO3 structure: ETS-NOCV analysis. Struct. Chem. 2012, 23, 1369-1375.

69

Gaur, A. P. S.; Sahoo, S.; Ahmadi, M.; Dash, S. P.; Guinel, M. J. -F.; Katiyar, R. S. Surface energy engineering for tunable wettability through controlled synthesis of MoS2. Nano Lett. 2014, 14, 4314-4321.

70

Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N. Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 2012, 6, 3468-3480.

File
nr-9-6-1709_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 December 2015
Revised: 31 January 2016
Accepted: 06 March 2016
Published: 08 April 2016
Issue date: June 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was partially supported by the Priority Research Centers Program (No. 2009-0093823), the Basic Science Research Program (No. 2013063062), the Korean Government (MSIP) (No. 2015R1A5A1037668) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST).

Return