Journal Home > Volume 9 , Issue 6

We propose a new analytical approach combining vibrational spectroscopy and acoustic tomography for the detection and characterization of vesicles inside Streptomyces bacteria. Using atomic force microscopy and infrared spectroscopy (AFM-IR), we detect the presence of triglyceride vesicles. Their sizes in depth are measured with high accuracy using mode synthesizing atomic force microscopy (MS-AFM). We conducted a comparative study of AFM-IR and MS-AFM, and highlighted the advantages of the coupling of these techniques in having a full characterization (chemical, topographical, and volumetric) of a biological sample. With these complementary techniques, a complete access to the vesicle size distribution has been achieved with an accuracy of less than 50 nm. A 3D reconstruction of bacteria showing the in-depth distribution of vesicles is given to underline the great potential of the acoustic method.


menu
Abstract
Full text
Outline
About this article

Combining infrared and mode synthesizing atomic force microscopy: Application to the study of lipid vesicles inside Streptomyces bacteria

Show Author's information Pauline Vitry1Rolando Rebois2Eric Bourillot1( )Ariane Deniset-Besseau2Marie-Joelle Virolle3Eric Lesniewska1Alexandre Dazzi2
ICB UMR CNRS 6303University of Bourgogne Franche Comté21078Dijon, France
LCP UMR CNRS 8000University Paris-Sud91405Orsay, France
I2BC UMR CNRS 9198University Paris-Sud91190Gif-Sur-Yvette, France

Abstract

We propose a new analytical approach combining vibrational spectroscopy and acoustic tomography for the detection and characterization of vesicles inside Streptomyces bacteria. Using atomic force microscopy and infrared spectroscopy (AFM-IR), we detect the presence of triglyceride vesicles. Their sizes in depth are measured with high accuracy using mode synthesizing atomic force microscopy (MS-AFM). We conducted a comparative study of AFM-IR and MS-AFM, and highlighted the advantages of the coupling of these techniques in having a full characterization (chemical, topographical, and volumetric) of a biological sample. With these complementary techniques, a complete access to the vesicle size distribution has been achieved with an accuracy of less than 50 nm. A 3D reconstruction of bacteria showing the in-depth distribution of vesicles is given to underline the great potential of the acoustic method.

Keywords: biology, atomic force microscopy, nanoscale subsurface imaging, acoustic microscopy, infrared microscopy

References(31)

1

Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621-639.

2

Ranade, N.; Vining, L. C. Accumulation of intracellular carbon reserves in relation to chloramphenicol biosynthesis by Streptomyces venezuelae. Can. J. Microbiol. 1993, 39, 377-383.

3

Kumar, P.; Barrett, D. M.; Delwiche, M. J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713-3729.

4

Chen, F.; Dixon, R. A. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 2007, 25, 759-761.

5

Atsumi, S.; Liao, J. C. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotechnol. 2008, 19, 414-419.

6

Lu, X. F.; Vora, H.; Khosla, C. Overproduction of free fatty acids in E. coli: Implications for biodiesel production. Metab. Eng. 2008, 10, 333-339.

7

Bokinsky, G.; Peralta-Yahya, P. P.; George, A.; Holmes, B. M.; Steen, E. J.; Dietrich, J.; Lee, T. S.; Tullman-Ercek, D.; Voigt, C. A.; Simmons, B. A. et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc. Natl. Acad. Sci. USA 2011, 108, 19949-19954.

8

Hopwood, D. A. Streptomyces in Nature and Medicine: The Antibiotic Makers; Oxford University Press: Oxford, 2007.

9

Butler, P. R.; Brown, M.; Oliver, S. G. Improvement of antibiotic titers from Streptomyces bacteria by interactive continuous selection. Biotechnol. Bioeng. 1996, 49, 185-196.

DOI
10

Goodfellow, M.; Williams, S. T.; Mordarski, M. Actinomycetes in Biotechnology; Academic Press: San Diego, 1988.

11

Coze, F.; Gilard, F.; Tcherkez, G.; Virolle, M. -J.; Guyonvarch, A. Carbon-flux distribution within Streptomyces coelicolor metabolism: A comparison between the actinorhodin- producing strain M145 and its non-producing derivative M1146. PLoS One 2013, 8, e84151.

12

Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930-933.

13

Binnig, G.; Gerber, C.; Stoll, E.; Albrecht, T. R.; Quate, C. F. Atomic resolution with atomic force microscope. EPL (Europhys. Lett.) 1987, 3, 1281-1286.

14

Kulik, A.; Attal, J.; Gremaud, G. Nearfield scanning acoustic microscopy. In Acoustical Imaging. Wei, Y.; Gu, B. L., Eds.; Springer: US, 1993; pp 241-244.

15

Passian, A.; Thundat, T. G.; Tetard, L. Mode-synthesizing atomic force microscopy and mode-synthesizing sensing. U. S. Patent 8, 448, 261, May 18, 2004.

16

Rabe, U.; Arnold, W. Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 1994, 64, 1493-1495.

17

Tetard, L.; Passian, A.; Venmar, K. T.; Lynch, R. M.; Voy, B. H.; Shekhawat, G.; Dravid, V. P.; Thundat, T. Imaging nanoparticles in cells by nanomechanical holography. Nat. Nanotechnol. 2008, 3, 501-505.

18

Shekhawat, G.; Dravid, V. Seeing the invisible: Scanning near-field ultrasound holography (SNFUH) for high resolution sub-surface imaging. Microsc. Microanal. 2006, 12, 1214-1215.

19

Hammiche, A.; Pollock, H. M.; Reading, M.; Claybourn, M.; Turner, P. H.; Jewkes, K. Photothermal FT-IR spectroscopy: A step towards FT-IR microscopy at a resolution better than the diffraction limit. Appl. Spectrosc. 1999, 53, 810-815.

20

Müller, T.; Ruggeri, F. S.; Kulik, A. J.; Shimanovich, U.; Mason, T. O.; Knowles, T. P. J.; Dietler, G. Nanoscale spatially resolved infrared spectra from single microdroplets. Lab Chip 2014, 14, 1315-1319.

21

Policar, C.; Waern, J. B.; Plamont, M. A.; Clède, S.; Mayet, C.; Prazeres, R.; Ortega, J. M.; Vessières, A.; Dazzi, A. Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance. Angew. Chem. 2011, 123, 890-894.

22

Dazzi, A.; Prater, C. B.; Hu, Q. C.; Chase, D. B.; Rabolt, J. F.; Marcott, C. AFM-IR: Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl. Spectrosc. 2012, 66, 1365-1384.

23

Prater, C.; Kjoller, K.; Shetty, R. Nanoscale infrared spectroscopy. Mater. Today 2010, 13, 56-60.

24

Gaiduk, A.; Ruijgrok, P. V.; Yorulmaz, M.; Orrit, M. Detection limits in photothermal microscopy. Chem. Sci. 2010, 1, 343-350.

25

Dazzi, A.; Glotin, F.; Carminati, R. Theory of infrared nanospectroscopy by photothermal induced resonance. J. Appl. Phys. 2010, 107, 124519.

26

Dazzi, A.; Prazeres, R.; Glotin, F.; Ortega, J. M. Analysis of nano-chemical mapping performed by an AFM-based ("AFMIR") acousto-optic technique. Ultramicroscopy 2007, 107, 1194-1200.

27

Wig, A.; Arakawa, E. T.; Passian, A.; Ferrell, T. L.; Thundat, T. Photothermal spectroscopy of Bacillus anthracis and Bacillus cereus with microcantilevers. Sensor. Actuat. B: Chem. 2006, 114, 206-211.

28

Lahiri, B.; Holland, G.; Centrone, A. Chemical imaging beyond the diffraction limit: Experimental validation of the PTIR technique. Small 2013, 9, 439-445.

29

Deniset-Besseau, A.; Prater, C. B.; Virolle, M. -J.; Dazzi, A. Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in Streptomyces species for biodiesel applications. J. Phys. Chem. Lett. 2014, 5, 654-658.

30

Vitry, P.; Bourillot, E.; Plassard, C.; Lacroute, Y.; Tetard, L.; Lesniewska, E. Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy. Appl. Phys. Lett. 2014, 105, 053110.

31

Vitry, P.; Bourillot, E.; Plassard, C.; Lacroute, Y.; Calkins, E.; Tetard, L.; Lesniewska, E. Mode-synthesizing atomic force microscopy for 3D reconstruction of embedded low-density dielectric nanostructures. Nano Res. 2015, 8, 2199-2205.

Publication history
Copyright
Acknowledgements

Publication history

Received: 02 November 2015
Revised: 26 February 2016
Accepted: 29 February 2016
Published: 29 April 2016
Issue date: June 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the ANR Bio-SoundIR project, French Agence Nationale de la Recherche (No. ANR-15-CE09-0002-01). We acknowledge the financial support of Region Bourgogne Council, Institute Carnot ARTS and Labex Action Integrated Smart System programs.

Return