Journal Home > Volume 9 , Issue 6

Copper sulfide (Cu7S4) nanoparticles coated with an ultra-high payload (~5.0 × 107 fluorine atoms per particle) of fluorinated ligands (oleylamine functionalized 3, 5-bis(trifluoromethyl)benzaldehyde, 19FOAm) exhibited a single intense 19F magnetic resonance (MR) signal and efficient near infrared photothermal performance in water medium. In vivo assessment revealed strong 19F MR signals at cancerous lesions and effective inhibition of tumor growth after photothermal treatment, indicating the great potential of these fabricated nanoprobes for simultaneous 19F MR imaging and photothermal therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Superfluorinated copper sulfide nanoprobes for simultaneous 19F magnetic resonance imaging and photothermal ablation

Show Author's information Gaofei HuJuan TangXilin BaiSuying XuLeyu Wang( )
State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China

Abstract

Copper sulfide (Cu7S4) nanoparticles coated with an ultra-high payload (~5.0 × 107 fluorine atoms per particle) of fluorinated ligands (oleylamine functionalized 3, 5-bis(trifluoromethyl)benzaldehyde, 19FOAm) exhibited a single intense 19F magnetic resonance (MR) signal and efficient near infrared photothermal performance in water medium. In vivo assessment revealed strong 19F MR signals at cancerous lesions and effective inhibition of tumor growth after photothermal treatment, indicating the great potential of these fabricated nanoprobes for simultaneous 19F MR imaging and photothermal therapy.

Keywords: photothermal therapy, 19F magnetic resonance imaging

References(47)

1

Tirotta, I.; Dichiarante, V.; Pigliacelli, C.; Cavallo, G.; Terraneo, G.; Bombelli, F. B.; Metrangolo, P.; Resnati, G. 19F magnetic resonance imaging (MRI): From design of materials to clinical applications. Chem. Rev. 2015, 115, 1106–1129.

2

Knight, J. C.; Edwards, P. G.; Paisey, S. J. Fluorinated contrast agents for magnetic resonance imaging; a review of recent developments. RSC Adv. 2011, 1, 1415–1425.

3

Kikuchi, K. Design, synthesis and biological application of chemical probes for bio-imaging. Chem. Soc. Rev. 2010, 39, 2048–2053.

4

Takaoka, Y.; Kiminami, K.; Mizusawa, K.; Matsuo, K.; Narazaki, M.; Matsuda, T.; Hamachi, I. Systematic study of protein detection mechanism of self-assembling 19F NMR/ MRI nanoprobes toward rational design and improved sensitivity. J. Am. Chem. Soc. 2011, 133, 11725–11731.

5

Yuan, Y.; Sun, H. B.; Ge, S. C.; Wang, M. J.; Zhao, H. X.; Wang, L.; An, L. N.; Zhang, J.; Zhang, H. F.; Hu, B. et al. Controlled intracellular self-assembly and disassembly of 19F nanoparticles for MR imaging of caspase 3/7 in zebrafish. ACS Nano 2015, 9, 761–768.

6

Tirotta, I.; Mastropietro, A.; Cordiglieri, C.; Gazzera, L.; Baggi, F.; Baselli, G.; Bruzzone, M. G.; Zucca, I.; Cavallo, G.; Terraneo, G. et al. A superfluorinated molecular probe for highly sensitive in vivo 19F-MRI. J. Am. Chem. Soc. 2014, 136, 8524–8527.

7

Lim, Y. T.; Noh, Y. W.; Cho, J. H.; Han, J. H.; Choi, B. S.; Kwon, J.; Hong, K. S.; Gokarna, A.; Cho, Y. H.; Chung, B. H. Multiplexed imaging of therapeutic cells with multispectrally encoded magnetofluorescent nanocomposite emulsions. J. Am. Chem. Soc. 2009, 131, 17145–17154.

8

Janjic, J. M.; Srinivas, M.; Kadayakkara, D. K. K.; Ahrens, E. T. Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J. Am. Chem. Soc. 2008, 130, 2832–2841.

9

Boehm-Sturm, P.; Aswendt, M.; Minassian, A.; Michalk, S.; Mengler, L.; Adamczak, J.; Mezzanotte, L.; Lowik, C.; Hoehn, M. A multi-modality platform to image stem cell graft survival in the naïve and stroke-damaged mouse brain. Biomaterials 2014, 35, 2218–2226.

10

Ruiz-Cabello, J.; Barnett, B. P.; Bottomley, P. A.; Bulte, J. W. M. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed. 2011, 24, 114–129.

11

Srinivas, M.; Heerschap, A.; Ahrens, E. T.; Figdor, C. G.; de Vries, I. J. M. 19F MRI for quantitative in vivo cell tracking. Trends Biotechnol. 2010, 28, 363–370.

12

Srinivas, M.; Cruz, L. J.; Bonetto, F.; Heerschap, A.; Figdor, C. G.; de Vries, I. J. M. Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging. Biomaterials 2010, 31, 7070–7077.

13

Neubauer, A. M.; Myerson, J.; Caruthers, S. D.; Hockett, F. D.; Winter, P. M.; Chen, J. J.; Gaffney, P. J.; Robertson, J. D.; Lanza, G. M.; Wickline, S. A. Gadolinium-modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging. Magn. Reson. Med. 2008, 60, 1066–1072.

14

Riess, J. G. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif. Cells Blood Substit. Biotechnol. 2005, 33, 47–63.

15

Chen, H. L.; Song, M. L.; Tang, J.; Hu, G. F.; Xu, S. Y.; Guo, Z. D.; Li, N. N.; Cui, J. B.; Zhang, X. Z.; Chen, X. Y. et al. Ultrahigh 19F loaded Cu1.75S nanoprobes for simultaneous 19F magnetic resonance imaging and photothermal therapy. ACS Nano 2016, 10, 1355–1362.

16

Srinivas, M.; Morel, P. A.; Ernst, L. A.; Laidlaw, D. H.; Ahrens, E. T. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn. Reson. Med. 2007, 58, 725–734.

17

Ahrens, E. T.; Flores, R.; Xu, H. Y.; Morel, P. A. In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol. 2005, 23, 983–987.

18

Goswami, L. N.; Khan, A. A.; Jalisatgi, S. S.; Hawthorne, M. F. Synthesis and in vitro assessment of a bifunctional closomer probe for fluorine (19F) magnetic resonance and optical bimodal cellular imaging. Chem. Commun. 2014, 50, 5793–5795.

19

Wang, K. W.; Peng, H.; Thurecht, K. J.; Puttick, S.; Whittaker, A. K. Biodegradable core crosslinked star polymer nanoparticles as 19F MRI contrast agents for selective imaging. Polym. Chem. 2014, 5, 1760–1771.

20

Wang, K. W.; Peng, H.; Thurecht, K. J.; Puttick, S.; Whittaker, A. K. pH-responsive star polymer nanoparticles: Potential 19F MRI contrast agents for tumour-selective imaging. Polym. Chem. 2013, 4, 4480–4489.

21

Thurecht, K. J.; Blakey, I.; Peng, H.; Squires, O.; Hsu, S.; Alexander, C.; Whittaker, A. K. Functional hyperbranched polymers: Toward targeted in vivo 19F magnetic resonance imaging using designed macromolecules. J. Am. Chem. Soc. 2010, 132, 5336–5337.

22

Du, W. J.; Nyström, A. M.; Zhang, L.; Powell, K. T.; Li, Y. L.; Cheng, C.; Wickline, S. A.; Wooley, K. L. Amphiphilic hyperbranched fluoropolymers as nanoscopic 19F magnetic resonance imaging agent assemblies. Biomacromolecules 2008, 9, 2826–2833.

23

Rolfe, B. E.; Blakey, I.; Squires, O.; Peng, H.; Boase, N. R. B.; Alexander, C.; Parsons, P. G.; Boyle, G. M.; Whittaker, A. K.; Thurecht, K. J. Multimodal polymer nanoparticles with combined 19F magnetic resonance and optical detection for tunable, targeted, multimodal imaging in vivo. J. Am. Chem. Soc. 2014, 136, 2413–2419.

24

Yu, W. J.; Yang, Y. Q.; Bo, S. W.; Li, Y.; Chen, S. Z.; Yang, Z. G.; Zheng, X.; Jiang, Z. X.; Zhou, X. Design and synthesis of fluorinated dendrimers for sensitive 19F MRI. J. Org. Chem. 2015, 80, 4443–4449.

25

Ogawa, M.; Nitahara, S.; Aoki, H.; Ito, S.; Narazaki, M.; Matsuda, T. Synthesis and evaluation of water-soluble fluorinated dendritic block-copolymer nanoparticles as a 19F-MRI contrast agent. Macromol. Chem. Phys. 2010, 211, 1602–1609.

26

Criscione, J. M.; Le, B. L.; Stern, E.; Brennan, M.; Rahner, C.; Papademetris, X.; Fahmy, T. M. Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials 2009, 30, 3946–3955.

27

Boccalon, M.; Franchi, P.; Lucarini, M.; Delgado, J. J.; Sousa, F.; Stellacci, F.; Zucca, I.; Scotti, A.; Spreafico, R.; Pengo, P. et al. Gold nanoparticles protected by fluorinated ligands for 19F MRI. Chem. Commun. 2013, 49, 8794–8796.

28

Matsushita, H.; Mizukami, S.; Sugihara, F.; Nakanishi, Y.; Yoshioka, Y.; Kikuchi, K. Multifunctional core–shell silica nanoparticles for highly sensitive 19F magnetic resonance imaging. Angew. Chem., Int. Ed. 2014, 53, 1008–1011.

29

Gentilini, C.; Evangelista, F.; Rudolf, P.; Franchi, P.; Lucarini, M.; Pasquato, L. Water-soluble gold nanoparticles protected by fluorinated amphiphilic thiolates. J. Am. Chem. Soc. 2008, 130, 15678–15682.

30

Chen, S. Z.; Yang, Y. Q.; Li, H. D.; Zhou, X.; Liu, M. L. pH-triggered Au-fluorescent mesoporous silica nanoparticles for 19F MR/fluorescent multimodal cancer cellular imaging. Chem. Commun. 2014, 50, 283–285.

31

Nakamura, T.; Sugihara, F.; Matsushita, H.; Yoshioka, Y.; Mizukami, S.; Kikuchi, K. Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery. Chem. Sci. 2015, 6, 1986–1990.

32

Huang, S.; Liu, J.; He, Q.; Chen, H. L.; Cui, J. B.; Xu, S. Y.; Zhao, Y. L.; Chen, C. Y.; Wang, L. Y. Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for NIR photo-triggered drug release. Nano Res. 2015, 8, 4038–4047.

33

Zhang, Z. J.; Wang, J.; Nie, X.; Wen, T.; Ji, Y. L.; Wu, X. C.; Zhao, Y. L.; Chen, C. Y. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc. 2014, 136, 7317–7326.

34

Liang, C.; Diao, S.; Wang, C.; Gong, H.; Liu, T.; Hong, G. S.; Shi, X. Z.; Dai, H. J.; Liu, Z. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv. Mater. 2014, 26, 5646–5652.

35

Wang, Z.; Yue, X. Y.; Wang, Y.; Qian, C. Q.; Huang, P.; Lizak, M.; Niu, G.; Wang, F.; Rong, P. F.; Kiesewetter, D. O. et al. A symmetrical fluorous dendron-cyanine dye-conjugated bimodal nanoprobe for quantitative 19F MRI and NIR fluorescence bioimaging. Adv. Healthc. Mater. 2014, 3, 1326–1333.

36

Song, X. J.; Gong, H.; Yin, S. N.; Cheng, L.; Wang, C.; Li, Z. W.; Li, Y. G.; Wang, X. Y.; Liu, G.; Liu, Z. Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv. Funct. Mater. 2014, 24, 1194–1201.

37

Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

38

Cheng, L.; Yang, K.; Chen, Q.; Liu, Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 2012, 6, 5605– 5613.

39

Cui, J. B.; Li, Y. J.; Liu, L.; Chen, L.; Xu, J.; Ma, J. W.; Fang, G.; Zhu, E. B.; Wu, H.; Zhao, L. X. et al. Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett. 2015, 15, 6295–6301.

40

Cui, J. B.; Jiang, R.; Xu, S. Y.; Hu, G. F.; Wang, L. Y. Cu7S4 nanosuperlattices with greatly enhanced photothermal efficiency. Small 2015, 11, 4183–4190.

41

Huang, S.; Peng, S.; Li, Y. B.; Cui, J. B.; Chen, H. L.; Wang, L. Y. Development of NIR-Ⅱ fluorescence image-guided and pH-responsive nanocapsules for cocktail drug delivery. Nano Res. 2015, 8, 1932–1943.

42

Huang, S.; Bai, M.; Wang, L. Y. General and facile surface functionalization of hydrophobic nanocrystals with poly(amino acid) for cell luminescence imaging. Sci. Rep. 2013, 3, 2023–2027.

43

Bai, M.; Bai, X. L.; Wang, L. Y. Real-time fluorescence tracking of gene delivery via multifunctional nanocomposites. Anal. Chem. 2014, 86, 11196–11202.

44

Deng, M. L.; Tu, N.; Bai, F.; Wang, L. Y. Surface functionalization of hydrophobic nanocrystals with one particle per micelle for bioapplications. Chem. Mater. 2012, 24, 2592–2597.

45

Deng, M. L.; Wang, L. Y. Unexpected luminescence enhancement of upconverting nanocrystals by cation exchange with well retained small particle size. Nano Res. 2014, 7, 782–793.

46

Wang, H. J.; Wang, L. Y. One-pot syntheses and cell imaging applications of poly(amino acid) coated LaVO4: Eu3+ luminescent nanocrystals. Inorg. Chem. 2013, 52, 2439–2445.

47

Li, H.; Wang, H. J.; Wang, L. Y. Synthesis and sensing application of highly luminescent and water stable polyaspartate functionalized LaF3 nanocrystals. J. Mater. Chem. C 2013, 1, 1105–1110.

File
nr-9-6-1630_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 January 2015
Revised: 21 February 2016
Accepted: 22 February 2016
Published: 08 April 2016
Issue date: June 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China (Nos. 21475007, 21275015, and 21505003) and the Fundamental Research Funds for the Central Universities (Nos. YS1406, buctrc201507, and buctrc201608). We also thank Prof. X. Zhang and Dr. M. Song in Xiamen University for helping 19F-MR imaging, and the support from the "Innovation and Promotion Project of BUCT", the "Public Hatching Platform for Recruited Talents of BUCT" and BUCT Fund for Disciplines Construction and Development (No. XK1526).

Return