Journal Home > Volume 9 , Issue 6

Formic acid oxidation is an important electrocatalytic reaction in proton-exchange membrane (PEM) fuel cells, in which both active sites and species adsorption/activation play key roles. In this study, we have developed hollow Pd-Ag alloy nanostructures with high active surface areas for application to electrocatalytic formic acid oxidation. When a certain amount of Ag is incorporated into a Pd lattice, which is already a highly active material for formic acid oxidation, the electrocatalytic activity can be significantly boosted. As indicated by theoretical simulations, coupling between Pd and Ag induces polarization charges on Pd catalytic sites, which can enhance the adsorption of HCOO* species. As a result, the designed electrocatalysts can achieve reduced Pd usage and enhanced catalytic properties at the same time. This study represents an approach that simultaneously fabricates hollow structures to increase the number of active sites and utilizes interatomic interactions to tune species adsorption/activation towards improved electrocatalytic performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation

Show Author's information Dong Liu1,§Maolin Xie1,§Chengming Wang1( )Lingwen Liao2Lu Qiu1Jun Ma1Hao Huang1Ran Long1Jun Jiang1( )Yujie Xiong1( )
Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials)Hefei Science Center (CAS)and School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026China
Key Laboratory of Materials PhysicsInstitute of Solid State PhysicsChinese Academy of SciencesHefei230021China

§ These authors contributed equally to this work.

Abstract

Formic acid oxidation is an important electrocatalytic reaction in proton-exchange membrane (PEM) fuel cells, in which both active sites and species adsorption/activation play key roles. In this study, we have developed hollow Pd-Ag alloy nanostructures with high active surface areas for application to electrocatalytic formic acid oxidation. When a certain amount of Ag is incorporated into a Pd lattice, which is already a highly active material for formic acid oxidation, the electrocatalytic activity can be significantly boosted. As indicated by theoretical simulations, coupling between Pd and Ag induces polarization charges on Pd catalytic sites, which can enhance the adsorption of HCOO* species. As a result, the designed electrocatalysts can achieve reduced Pd usage and enhanced catalytic properties at the same time. This study represents an approach that simultaneously fabricates hollow structures to increase the number of active sites and utilizes interatomic interactions to tune species adsorption/activation towards improved electrocatalytic performance.

Keywords: palladium, silver, electrocatalysis, formic acid oxidation, hollow nanostructures

References(39)

1

Iyyamperumal, R.; Zhang, L.; Henkelman, G.; Crooks, R. M. Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles. J. Am. Chem. Soc. 2013, 135, 5521–5524.

2

Ma, L.; Wang, C. M.; Gong, M.; Liao, L. W.; Long, R.; Wang, J. G.; Wu, D.; Zhong, W.; Kim, M. J.; Chen, Y. X. et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano 2012, 6, 9797–9806.

3

Zhang, S.; Shao, Y. Y.; Yin, G. P.; Lin, Y. H. Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation. Angew. Chem., Int. Ed. 2010, 49, 2211–2214.

4

Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H. Q.; Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 2015, 8, 350–363.

5

Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824–832.

6

Zhang, H.; Jin, M. S.; Xia, Y. N. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035–8049.

7

Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357.

8

Mazumder, V.; Sun, S. H. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589.

9

Xia, X. H.; Choi, S. I.; Herron, J. A.; Lu, N.; Scaranto, J.; Peng, H. C.; Wang, J. G.; Mavrikakis, M.; Kim, M. J.; Xia, Y. N. Facile synthesis of palladium right bipyramids and their use as seeds for overgrowth and as catalysts for formic acid oxidation. J. Am. Chem. Soc. 2013, 135, 15706–15709.

10

Su, N.; Chen, X. Y.; Ren, Y. H.; Yue, B.; Wang, H.; Cai, W. B.; He, H. Y. The facile synthesis of single crystalline palladium arrow-headed tripods and their application in formic acid electro-oxidation. Chem. Commun. 2015, 51, 7195–7198.

11

Zheng, J. N.; Zhang, M.; Li, F. F.; Li, S. S.; Wang, A. J.; Feng, J. J. Facile synthesis of Pd nanochains with enhanced electrocatalytic performance for formic acid oxidation. Electrochim. Acta 2014, 130, 446–452.

12

Lu, Y. Z.; Chen, W. Nanoneedle-covered Pd-Ag nanotubes: High electrocatalytic activity for formic acid oxidation. J. Phys. Chem. C 2010, 114, 21190–21200.

13

Mazumder, V.; Chi, M. F.; Mankin, M. N.; Liu, Y.; Metin, Ö.; Sun, D. H.; More, K. L.; Sun, S. H. A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation. Nano Lett. 2012, 12, 1102–1106.

14

Wang, Y.; Choi, S. I.; Zhao, X.; Xie, S. F.; Peng, H. C.; Chi, M. F.; Huang, C. Z.; Xia, Y. N. Polyol synthesis of ultrathin Pd nanowires via attachment-based growth and their enhanced activity towards formic acid oxidation. Adv. Funct. Mater. 2014, 24, 131–139.

15

Hu, S. Z.; Scudiero, L.; Ha, S. Electronic effect of Pd-transition metal bimetallic surfaces toward formic acid electrochemical oxidation. Electrochem. Commun. 2014, 38, 107–109.

16

Chen, L. Y.; Guo, H.; Fujita, T.; Hirata, A.; Zhang, W.; Inoue, A.; Chen, M. W. Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions. Adv. Funct. Mater. 2011, 21, 4364–4370.

17

Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, J.; Liao, S. J. Hybrid PdAg alloy-Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Res. 2013, 6, 571–580.

18

Zeng, J.; Zhu, C.; Tao, J.; Jin, M. S.; Zhang, H.; Li, Z. Y.; Zhu, Y. M.; Xia, Y. N. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. Angew. Chem., Int. Ed. 2012, 51, 2354–2358.

19

Fu, G. T.; Liu, C.; Zhang, Q.; Chen, Y.; Tang, Y. W. Polyhedral palladium–silver alloy nanocrystals as highly active and stable electrocatalysts for the formic acid oxidation reaction. Sci. Rep. 2015, 5, 13703.

20

Yin, Z.; Zhang, Y. N.; Chen, K.; Li, J.; Li, W. J.; Tang, P.; Zhao, H. B.; Zhu, Q. J.; Bao, X. H.; Ma, D. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation. Sci. Rep. 2014, 4, 4288.

21

Chang, J. F.; Feng, L. G.; Liu, C. P.; Xing, W.; Hu, X. L. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells. Angew. Chem., Int. Ed. 2014, 53, 122–126.

22

Demirci, U. B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J. Power Sources 2007, 173, 11–18.

23

Bai, S.; Wang, C. M.; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt– Pd–graphene stack structures. Angew. Chem., Int. Ed. 2014, 53, 12120–12124.

24

Li, B.; Long, R.; Zhong, X. L.; Bai, Y.; Zhu, Z. J.; Zhang, X.; Zhi, M.; He, J. W.; Wang, C. M.; Li, Z. -Y. et al. Investigation of size-dependent plasmonic and catalytic properties of metallic nanocrystals enabled by size control with HCl oxidative etching. Small 2012, 8, 1710–1716.

25

Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protocols 2007, 2, 2182–2190.

26

Chen, J. Y.; Wiley, B.; McLellan, J.; Xiong, Y. J.; Li, Z. Y.; Xia, Y. N. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005, 5, 2058–2062.

27

Zhang, Q.; Cobley, C. M.; Zeng, J.; Wen, L. P.; Chen, J. Y.; Xia, Y. N. Dissolving Ag from Au-Ag alloy nanoboxes with H2O2: A method for both tailoring the optical properties and measuring the H2O2 concentration. J. Phys. Chem. C 2010, 114, 6396–6400.

28

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

29

Bansal, V.; Li, V.; O'Mullane, A. P.; Bhargava, S. K. Shape dependent electrocatalytic behaviour of silver nanoparticles. CrystEngComm 2010, 12, 4280–4286.

30

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

31

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

32

Ji, X. L.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2, 286–293.

33

Casado-Rivera, E.; Gál, Z.; Angelo, A. C. D.; Lind, C.; DiSalvo, F. J.; Abruña, H. D. Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface. ChemPhysChem 2003, 4, 193–199.

34

Venkateswara Rao, C.; Cabrera, C. R.; Ishikawa, Y. Graphene-supported Pt–Au alloy nanoparticles: A highly efficient anode for direct formic acid fuel cells. J. Phys. Chem. C 2011, 115, 21963–21970.

35

Zhao, Z. Z.; Fang, X.; Li, Y. L.; Wang, Y.; Shen, P. K.; Xie, F. Y.; Zhang, X. The origin of the high performance of tungsten carbides/carbon nanotubes supported Pt catalysts for methanol electrooxidation. Electrochem. Commun. 2009, 11, 290–293.

36

Arenz, M.; Stamenkovic, V.; Schmidt, T. J.; Wandelt, K.; Ross, P. N.; Markovic, N. M. The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces. Phys. Chem. Chem. Phys. 2003, 5, 4242–4251.

37

Wang, H. F.; Liu, Z. P. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model. J. Phys. Chem. C 2009, 113, 17502–17508.

38

Logadottir, A.; Rod, T. H.; Nørskov, J. K.; Hammer, B.; Dahl, S.; Jacobsen, C. J. H. The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 2001, 197, 229–231.

39

Bai, S.; Yang, L.; Wang, C. L.; Lin, Y.; Lu, J. L.; Jiang, J.; Xiong, Y. J. Boosting photocatalytic water splitting: Interfacial charge polarization in atomically controlled core–shell cocatalyst. Angew. Chem., Int. Ed. 2015, 54, 14810–14814.

File
nr-9-6-1590_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 December 2015
Revised: 02 February 2016
Accepted: 17 February 2016
Published: 31 March 2016
Issue date: June 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2014CB848900), National Natural Science Foundation of China (Nos. 21471141, 21573212, and 21473166), Anhui Provincial Natural Science Foundation (No. 1508085MB24), Recruitment Program of Global Experts, CAS Hundred Talent Program, Hefei Science Center (CAS) Funds for Users with Potential, and Fundamental Research Funds for the Central Universities (Nos. WK2060190025, WK2310000035, and WK2090050027).

Return