AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A facile one-step approach to hierarchically assembled core–shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage

Goli Nagaraju1Yeong Hwan Ko1Sung Min Cha1Sang Hyuk Im2Jae Su Yu1( )
Department of Electronics and Radio EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong-daeroGiheung-guYongin-siGyeonggi-do446-701Republic of Korea
Functional Crystallization Center (ERC)Department of Chemical EngineeringKyung Hee University1732 Deogyeong-daeroGiheung-guYongin-siGyeonggi-do446-701Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Hierarchical core–shell-like MnO2 nanostructures (NSs) were used to anchor MnO2 hexagonal nanoplate arrays (HNPAs) on carbon cloth (CC) fibers. The NSs were prepared by a novel one-step electrochemical deposition method. Under an external cathodic voltage of -2.0 V for 30 min, hierarchical core–shell-like MnO2-NS-decorated MnO2 HNPAs (MnO2 NSs@MnO2 HNPAs) were uniformly grown on CC with reliable adhesion. The phase purity and morphological properties of the samples were characterized by various physicochemical techniques. At a constant external cathodic voltage, growth of MnO2 NSs@MnO2 HNPAs on CC was carried for different time periods. When utilized as a flexible, robust, and binder-free electrode for pseudocapacitors, the hierarchical core–shell-like MnO2 NSs@MnO2 HNPAs on CC showed clearly enhanced electrochemical properties in 1 M Na2SO4 electrolyte solution. The results indicate that the MnO2 NSs@MnO2 HNPAs on CC have a maximum specific capacitance of 244.54 F/g at a current density of 0.5 A/g with excellent cycling stability compared to that of bare MnO2 HNPAs on CC (112.1 F/g at 0.5 A/g current density). We believe that the superior charge storage performance of the pseudocapacitive electrode can be mainly attributed to the hierarchical MnO2 NSs@MnO2 HNPAs building blocks that have a large specific surface area, offering additional electroactive sites for efficient electrochemical reactions. The facile and single-step approach to growth of hierarchical pseudocapacitive materials on textile based electrodes opens up the possibility for the fabrication of high-performance flexible energy storage devices.

Electronic Supplementary Material

Download File(s)
nr-9-5-1507_ESM.pdf (1.5 MB)

References

1

Chen, L. -F.; Zhang, X. -D.; Liang, H. -W.; Kong, M. G.; Guan, Q. -F.; Chen, P.; Wu, Z. -Y.; Yu, S. -H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092-7102.

2

Luo, Y. S.; Luo, J. S.; Jiang, J.; Zhou, W. W.; Yang, H. P.; Qi, X. Y.; Zhang, H.; Fan, H. J.; Yu, D. Y. W.; Li, C. M. et al. Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559-6566.

3

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332-337.

4

Balogun, M. -S.; Qiu, W. T.; Wang, W.; Fang, P. P.; Lu, X. H.; Tong, Y. X. Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. A 2015, 3, 1364-1387.

5

Mohamed, S. G.; Chen, C. -J.; Chen, C. K.; Hu, S. -F.; Liu, R. -S. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes. ACS Appl. Mater. Interfaces 2014, 6, 22701-22708.

6

Lee, Y. -H.; Kim, J. -S.; Noh, J.; Lee, I.; Kim, H. J.; Choi, S.; Seo, J.; Jeon, S.; Kim, T. -S.; Lee, J. -Y. et al. Wearable textile battery rechargeable by solar energy. Nano Lett. 2013, 13, 5753-5761.

7

Hou, J. B.; Shao, Y. Y.; Ellis, M. W.; Moore, R. B.; Yi, B. L. Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys. 2011, 13, 15384-15402.

8

Zhao, F.; Rahunen, N.; Varcoe, J. R.; Chandra, A.; Avignone-Rossa, C.; Thumser, A. E.; Slade, R. C. T. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Technol. 2008, 42, 4971-4976.

9

Yu, P.; Zhang, X.; Wang, D. L.; Wang, L.; Ma, Y. W. Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Cryst. Growth Des. 2009, 9, 528-533.

10

Yang, P. H.; Xiao, X.; Li, Y. Z.; Ding, Y.; Qiang, P. F.; Tan, X. H.; Mai, W. J.; Lin, Z. Y.; Wu, W. Z.; Li, T. Q. et al. Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617-2626.

11

Liu, Y.; Wang, R.; Yan, X. Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Sci. Rep. 2015, 5, 11095.

12

Zhang, X. J.; Shi, W. H.; Zhu, J. X.; Zhao, W. Y.; Ma, J.; Mhaisalkar, S.; Maria, T. L.; Yang, Y. H.; Zhang, H.; Hng, H. H. et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 2010, 3, 643-652.

13

Hou, Y.; Cheng, Y. W.; Hobson, T.; Liu, J. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/ conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 2010, 10, 2727-2733.

14

Maiti, S.; Pramanik, A.; Mahanty, S. Interconnected network of MnO2 nanowires with a "cocoonlike" morphology: Redox couple-mediated performance enhancement in symmetric aqueous supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 10754-10762.

15

Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184-3190.

16

Yu, Z. -Y.; Chen, L. -F.; Yu, S. -H. Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J. Mater. Chem. A 2014, 2, 10889-10894.

17

Chen, X. Y.; Chen, C.; Zhang, Z. J.; Xie, D. H.; Deng, X.; Liu, J. W. Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J. Power Sources 2013, 230, 50-58.

18

Shi, F.; Li, L.; Wang, X. -L.; Gu, C. -D.; Tu, J. -P. Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv. 2014, 4, 41910-41921.

19

Zhang, G. H.; Wang, T. H.; Yu, X. Z.; Zhang, H. N.; Duan, H. G.; Lu, B. G. Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2013, 2, 586-594.

20

Veerasubramani, G. K.; Krishnamoorthy, K.; Kim, S. J. Electrochemical performance of an asymmetric supercapacitor based on graphene and cobalt molybdate electrodes. RSC Adv. 2015, 5, 16319-16327.

21

Yang, Q.; Lu, Z. Y.; Liu, J. F.; Lei, X. D.; Chang, Z.; Luo, L.; Sun, X. M. Metal oxide and hydroxide nanoarrays: Hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Prog. Nat. Sci. : Mater. Int. 2013, 23, 351-366.

22

Cai, D. P.; Xiao, S. H.; Wang, D. D.; Liu, B.; Wang, L. L.; Liu, Y.; Li, H.; Wang, Y. R.; Li, Q. H.; Wang, T. H. Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors. Electrochim. Acta 2014, 142, 118-124.

23

Bi, R. -R.; Wu, X. -L.; Cao, F. -F.; Jiang, L. -Y.; Guo, Y. -G.; Wan, L. -J. Highly dispersed RuO2 nanoparticles on carbon nanotubes: Facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 2010, 114, 2448-2451.

24

Ding, S. J.; Zhu, T.; Chen, J. S.; Wang, Z. Y.; Yuan, C L.; Lou, X. W. Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. J. Mater. Chem. 2011, 21, 6602-6606.

25

Nagaraju, G.; Ko, Y. H.; Yu, J. S. Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors. J. Power Sources 2015, 283, 251-259.

26

Huang, J. C.; Xu, P. P.; Cao, D. X.; Zhou, X. B.; Yang, S. N.; Li, Y. J.; Wang, G. L. Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density. J. Power Sources 2014, 246, 371-376.

27

Chen, S.; Zhu, J. W.; Wu, X. D.; Han, Q. F.; Wang, X. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 2010, 4, 2822-2830.

28

Zhou, J.; Huang, Y.; Cao, X. H.; Ouyang, B.; Sun, W. P.; Tan, C. L.; Zhang, Y.; Ma, Q. L.; Liang, S. Q.; Yan, Q. Y. et al. Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale 2015, 7, 7035-7039.

29

Liu, B.; Liu, B. Y.; Wang, Q. F.; Wang, X. F.; Xiang, Q. Y.; Chen, D.; Shen, G. Z. New energy storage option: Toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 10011-10017.

30

Ma, J. P.; Cheng, Q. L.; Pavlinek, V.; Saha, P.; Li, C. Z. Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance. New J. Chem. 2013, 37, 722-728.

31

Kang, J. L.; Hirata, A.; Kang, L. J.; Zhang, X. M.; Hou, Y.; Chen, L. Y.; Li, C.; Fujita, T.; Akagi, K.; Chen, M. W. Enhanced supercapacitor performance of MnO2 by atomic doping. Angew. Chem., Int. Ed. 2013, 52, 1664-1667.

32

Portehault, D.; Cassaignon, S.; Nassif, N.; Baudrin, E.; Jolivet, J. -P. A Core-corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism. Angew. Chem., Int. Ed. 2008, 47, 6441-6444.

33

Chen, Y. -C.; Hsu, Y. -K.; Lin, Y. -G.; Lin, Y. -K.; Horng, Y. -Y.; Chen, L. -C.; Chen, K. -H. Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode. Electrochim. Acta 2011, 56, 7124-7130.

34

Zhang, D. Y.; Zhang, Y. H.; Luo, Y. S.; Chu, P. K. Highly porous honeycomb manganese oxide@carbon fibers core-shell nanocables for flexible supercapacitors. Nano Energy 2015, 13, 47-57.

35

Zhu, S. J.; Cen, W. L.; Hao, L. L.; Ma, J. J.; Yu, L.; Zheng, H. L.; Zhang, Y. X. Flower-like MnO2 decorated activated multihole carbon as high-performance asymmetric supercapacitor electrodes. Mater. Lett. 2014, 135, 11-14.

36

Feng, X. M.; Chen, N. N.; Zhang, Y.; Yan, Z. Z.; Liu, X. F.; Ma, Y. W.; Shen, Q. M.; Wang, L. H.; Huang, W. The self-assembly of shape controlled functionalized graphene-MnO2 composites for application as supercapacitors. J. Mater. Chem. A 2014, 2, 9178-9184.

37

Huang, M.; Zhang, Y. X.; Li, F.; Wang, Z. C.; Alamusi; Hu, N.; Wen, Z. Y.; Liu, Q. Merging of kirkendall growth and ostwald ripening: CuO@MnO2 core-shell architectures for asymmetric supercapacitors. Sci. Rep. 2014, 4, 4518.

38

Tao, J. Y.; Liu, N. S.; Li, L. Y.; Su, J.; Gao, Y. H. Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale 2014, 6, 2922-2928.

39

Yuan, C. Z.; Hou, L. R.; Yang, L.; Li, D. K.; Shen, L. F.; Zhang, F.; Zhang, X. G. Facile interfacial synthesis of flower-like hierarchical a-MnO2 sub-microspherical superstructures constructed by two-dimension mesoporous nanosheets and their application in electrochemical capacitors. J. Mater. Chem. 2011, 21, 16035-16041.

40

Zhang, X. M.; Ma, J.; Yang, W. L.; Gao, Z.; Wang, J.; Liu, Q.; Liu, J. Y.; Jing, X. Y. Manganese dioxide core-shell nanowires in situ grown on carbon spheres for supercapacitor application. CrystEngComm 2014, 16, 4016-4022.

41

Cao, J.; Mao, Q. H.; Shi, L.; Qian, Y. T. Fabrication of γ-MnO2/α-MnO2 hollow core/shell structures and their application to water treatment. J. Mater. Chem. 2011, 21, 16210-16215.

42

Wang, J.; Liu, J.; Zhou, Y. C.; Hodgson, P.; Li, Y. C. One-pot facile synthesis of hierarchical hollow microspheres constructed with MnO2 nanotubes and their application in lithium storage and water treatment. RSC Adv. 2013, 3, 25937-25943.

43

Shao, J. J.; Zhou, X. Y.; Liu, Q.; Zou, R. J.; Li, W. Y.; Yang, J. M.; Hu, J. Q. Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO2@MnO2 core/shell nanostructures for supercapacitors. J. Mater. Chem. A 2015, 3, 6168-6176.

44

Zhu, G. Y.; He, Z.; Chen, J.; Zhao, J.; Feng, X. M.; Ma, Y. W.; Fan, Q. L.; Wang, L. H.; Huang, W. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale 2014, 6, 1079-1085.

45

Li, S. Z.; Wen, J.; Mo, X. M.; Long, H.; Wang, H. N.; Wang, J. B.; Fang, G. J. Three-dimensional MnO2 nanowire/ ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J. Power Sources 2014, 256, 206-211.

46

Yu, L.; Zhang, G. Q.; Yuan, C. Z.; Lou, X. W. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Comm. 2013, 49, 137-139.

47

Klankowski, S. A.; Pandey, G. P.; Malek, G.; Thomas, C. R.; Bernasek, S. L.; Wu, J.; Li, J. Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers. Nanoscale 2015, 7, 8485-8494.

48

Xia, H.; Zhu, D. D.; Luo, Z. T.; Yu, Y.; Shi, X. Q.; Yuan, G. L.; Xie, J. P. Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors. Sci. Rep. 2013, 3, 2978.

49

Nagaraju, G.; Ko, Y. H.; Yu, J. S. Self-assembled hierarchical β-cobalt hydroxide nanostructures on conductive textiles by one-step electrochemical deposition. CrystEngComm 2014, 16, 11027-11034.

50

Lee, H. K.; Kim, M. S.; Yu, J. S. Effect of AZO seed layer on electrochemical growth and optical properties of ZnO nanorod arrays on ITO glass. Nanotechnology 2011, 22, 445602.

51

Nagaraju, G.; Ko, Y. H.; Yu, J. S. Effect of diameter and height of electrochemically-deposited ZnO nanorod arrays on the performance of piezoelectric nanogenerators. Mater. Chem. Phys. 2015, 149-150, 393-399.

52

Ko, Y. H.; Kim, S.; Park, W.; Yu, J. S. Facile fabrication of forest-like ZnO hierarchical structures on conductive fabric substrate. Phys. Status Solidi-Rapid Res. Lett. 2012, 6, 355-357.

53

Ko, Y. H.; Lee, S. H.; Yu, J. S. Mesoporous and hierarchical manganese dioxide nanoplates/nanowalls on Ni/PET conductive fabric. Phys. Status Solidi-Rapid Res. Lett. 2012, 6, 385-387.

54

Buciuman, F.; Patcas, F.; Craciun, R.; Zahn, D. R. T. Vibrational spectroscopy of bulk and supported manganese oxides. Phys. Chem. Chem. Phys. 1999, 1, 185-190.

55

Sun, M.; Lan, B.; Lin, T.; Cheng, G.; Ye, F.; Yu, L.; Cheng, X. L.; Zheng, X. Y. Controlled synthesis of nanostructured manganese oxide: Crystalline evolution and catalytic activities. CrystEngComm 2013, 15, 7010-7018.

56

Zhi, M. J.; Manivannan, A.; Meng, F. K.; Wu, N. Q. Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors. J. Power Sources 2012, 208, 345-353.

57

Luo, Y. S.; Jiang, J.; Zhou, W. W.; Yang, H. P.; Luo, J. S.; Qi, X. Y.; Zhang, H.; Yu, D. Y. W.; Li, C. M.; Yu, T. Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. J. Mater. Chem. 2012, 22, 8634-8640.

58

Cheng, H. H.; Long, L.; Shu, D.; Wu, J. Q.; Gong, Y. B.; He, C.; Kang, Z. X.; Zou, X. P. The supercapacitive behavior and excellent cycle stability of graphene/MnO2 composite prepared by an electrostatic self-assembly process. Int. J. Hydrogen Energy 2014, 39, 16151-16161.

59

Yan, J.; Wei, T.; Cheng, J.; Fan, Z. J.; Zhang, M. L. Preparation and electrochemical properties of lamellar MnO2 for supercapacitors. Mater. Res. Bull. 2010, 45, 210-215.

60

Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D.; Zhao, X. -B.; Fan, H. J. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 2012, 6, 5531-5538.

61

Veerasubramani, G. K.; Krishnamoorthy, K.; Kim, S. J. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte. J. Power Sources 2016, 306, 378-386.

Nano Research
Pages 1507-1522
Cite this article:
Nagaraju G, Ko YH, Cha SM, et al. A facile one-step approach to hierarchically assembled core–shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage. Nano Research, 2016, 9(5): 1507-1522. https://doi.org/10.1007/s12274-016-1047-4

789

Views

95

Crossref

N/A

Web of Science

97

Scopus

3

CSCD

Altmetrics

Received: 12 December 2015
Revised: 28 January 2016
Accepted: 14 February 2016
Published: 29 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return