Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The past decade has witnessed a rapid surge of interest in the research and development of non-precious metal-based electrocatalysts for the oxygen reduction reaction (ORR). Until now, the best catalysts in acidic electrolytes have exclusively been Fe-N-C-type materials from high-temperature pyrolysis. Despite the ORR activities of metal phthalocyanine or porphyrin macrocycles having long been known, their durability remains poor. In this work, we use these macrocycles as a basis to develop a novel organic-carbon hybrid material from in-situ polymerization of iron phthalocyanine on conductive multiwalled carbon nanotube scaffolds using a low-temperature microwave heating method. At an optimal polymerto-carbon ratio, the hybrid electrocatalyst exhibits excellent ORR activity with a positive half-wave potential (0.80 V), large mass activity (up to 18.0 A/g at 0.80 V), and a low peroxide yield (< 3%). In addition, strong electronic coupling between the polymer and carbon nanotubes is believed to suppress demetallization of the macrocycles, significantly improving cycling stability in acids. Our study represents a rare example of non-precious metal-based electrocatalysts prepared without high-temperature pyrolysis, while having ORR activity in acidic media with potential for practical applications.
Gewirth, A. A.; Thorum, M. S. Electroreduction of dioxygen for fuel-cell applications: Materials and challenges. Inorg. Chem. 2010, 49, 3557-3566.
Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526-8544.
Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167-3192.
Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878-1889.
Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 7, 394-400.
Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. -J.; Baek, J. -B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823-4892.
Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168-2201.
Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212-1213.
Zagal, J.; Páez, M.; Tanaka, A. A.; Dos Santos Junior, J. R., Jr.; Linkous, C. A. Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J. Electroanal. Chem. 1992, 339, 13-30.
Feng, Y. J.; Alonso-Vante, N. Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys. Status Solidi B 2008, 245, 1792-1806.
Zagal, J. H.; Griveau, S.; Silva, J. F.; Nyokong, T.; Bedioui, F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev. 2010, 254, 2755-2791.
Elzing, A.; Van der Putten, A.; Visscher, W.; Barendrecht, E. The cathodic reduction of oxygen at cobalt phthalocyanine: Influence of electrode preparation on electrocatalysis. J. Electroanal. Chem. Interf. Electrochem. 1986, 200, 313-322.
Van der Putten, A.; Elzing, A.; Visscher, W.; Barendrecht, E. Oxygen reduction on vacuum-deposited and adsorbed transition-metal phthalocyanine films. J. Electroanal. Chem. Interf. Electrochem. 1986, 214, 523-533.
Tanaka, A. A.; Fierro, C.; Scherson, D.; Yaeger, E. B. Electrocatalytic aspects of iron phthalocyanine and its μ-oxo derivatives dispersed on high surface area carbon. J. Phys. Chem. 1987, 91, 3799-3807.
Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Gyu Kim, M.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.
Jiang, Y. Y.; Lu, Y. Z.; Lv, X. Y.; Han, D. X.; Zhang, Q. X.; Niu, L.; Chen, W. Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal. 2013, 3, 1263-1271.
Baranton, S.; Coutanceau, C.; Roux, C.; Hahn, F.; Léger, J. M. Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: Tolerance to methanol, stability and kinetics. J. Electroanal. Chem. 2005, 577, 223-234.
Li, W. M.; Yu, A. P.; Higgins, D. C.; Llanos, B. G.; Chen, Z. W. Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 2010, 132, 17056-17058.
Van der Putten, A.; Elzing, A.; Visscher, W.; Barendrecht, E. Oxygen reduction on pyrolyzed carbon-supported transition metal chelates. J. Electroanal. Chem. Interf. Electrochem. 1986, 205, 233-244.
Bezerra, C. W. B.; Zhang, L.; Liu, H. S.; Lee, K. C.; Marques, A. L. B.; Marques, E. P.; Wang, H. J.; Zhang, J. J. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. J. Power Sources 2007, 173, 891-908.
Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443-447.
Masa, J.; Xia, W.; Muhler, M.; Schuhmann, W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 10102-10120.
Zhou, Y.; Wang, B.; Liu, C. H.; Han, N.; Xu, X. N.; Zhao, F. P.; Fan, J.; Li, Y. G. Polyanthraquinone-based nanostructured electrode material capable of high-performance pseudocapacitive energy storage in aprotic electrolyte. Nano Energy 2015, 15, 654-661.
Hijazi, I.; Bourgeteau, T.; Cornut, R.; Morozan, A.; Filoramo, A.; Leroy, J.; Derycke, V.; Jousselme, B.; Campidelli, S. Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction. J. Am. Chem. Soc. 2014, 136, 6348-6354.
Tomoda, H.; Saito, S.; Ogawa, S.; Shiraishi, S. Synthesis of phthalocyanines from phthalonitrile with organic strong bases. Chem. Lett. 1980, 9, 1277-1280.
Melendres, C. A.; Cafasso, F. A. Electrochemical and in situ laser Raman spectroscopy studies on carbon-supported iron phthalocyanine electrodes. J. Electrochem. Soc. 1981, 128, 755-760.
Szybowicz, M.; Makowiecki, J. Orientation study of iron phthalocyanine (FePc) thin films deposited on silicon substrate investigated by atomic force microscopy and micro-Raman spectroscopy. J. Mater. Sci. 2012, 47, 1522-1530.
Liu, Z. Q.; Zhang, X. X.; Zhang, Y. X.; Jiang, J. Z. Theoretical investigation of the molecular, electronic structures and vibrational spectra of a series of first transition metal phthalocyanines. Spectrochim. Acta 2007, 67, 1232-1246.
Cataldo, F. Synthesis and study of electronic spectra of planar polymeric phthalocyanines. Dyes Pigm. 1997, 34, 75-85.
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.
Zhou, J. G.; Duchesne, P. N.; Hu, Y. F.; Wang, J.; Zhang, P.; Li, Y. G.; Regier, T.; Dai, H. J. Fe-N bonding in a carbon nanotube-graphene complex for oxygen reduction: An XAS study. Phys. Chem. Chem. Phys. 2014, 16, 15787-15791.
Cook, P. L.; Liu, X. S.; Yang, W. L.; Himpsel, F. J. X-ray absorption spectroscopy of biomimetic dye molecules for solar cells. J. Chem. Phys. 2009, 131, 194701.
Morozan, A.; Campidelli, S.; Filoramo, A.; Jousselme, B.; Palacin, S. Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 2011, 49, 4839-4847.
Li, H. J.; Xu, Z. W.; Li, K. Z.; Hou, X. H.; Cao, G. X.; Zhang, Q. L.; Cao, Z. Y. Modification of multi-walled carbon nanotubes with cobalt phthalocyanine: Effects of the templates on the assemblies. J. Mater. Chem. 2011, 21, 1181-1186.
Mamuru, S. A.; Ozoemena, K. I.; Fukuda, T.; Kobayashi, N.; Nyokong, T. Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochim. Acta 2010, 55, 6367-6375.
Garsany, Y.; Baturina, O. A.; Swider-Lyons, K. E.; Kocha, S. S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 2010, 82, 6321-6328.
Wang, Q.; Zhou, Z. -Y.; Lai, Y. -J.; You, Y.; Liu, J. -G.; Wu, X. -L.; Terefe, E.; Chen, C.; Song, L.; Rauf, M. et al. Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 2014, 136, 10882-10885.
Wang, Y. -C.; Lai, Y. -J.; Song, L.; Zhou, Z. -Y.; Liu, J. -G.; Wang, Q.; Yang, X. -D.; Chen, C.; Shi, W.; Zheng, Y. -P. et al. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew. Chem., Int. Ed. 2015, 54, 9907-9910.
Bonakdarpour, A.; Dahn, T. R.; Atanasoski, R. T.; Debe, M. K.; Dahn, J. R. H2O2 release during oxygen reduction reaction on Pt nanoparticles. Electrochem. Solid-State Lett. 2008, 11, B208-B211.
Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345-352.
Baranton, S.; Coutanceau, C.; Garnier, E.; Léger, J. M. How does α-FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (orr)? J. Electroanal. Chem. 2006, 590, 100-110.
Ramírez, G.; Trollund, E.; Isaacs, M.; Armijo, F.; Zagal, J.; Costamagna, J.; Aguirre, M. J. Electroreduction of molecular oxygen on poly-iron-tetraaminophthalocyanine modified electrodes. Electroanalysis 2002, 14, 540-545.
Comments on this article