Journal Home > Volume 9 , Issue 5

In this study, we report a spindle-like micromotor. This device, which is fabricated using a one-step electrospinning method, consists of biodegradable polycaprolactone and an anionic surfactant. Intriguingly, not only can the resulting micromotor move autonomously on the surface of water for a long period of time (~40 min) due to the Marangoni effect, but it also exhibits a pH sensing behavior due to variations in the surface tension caused by the release of surfactant under different pH conditions. More interestingly, we reveal that the motion-based pH sensing property is size-dependent, with smaller structures exhibiting a higher sensitivity. In addition, since polycaprolactone is a biodegradable material, the micromotor described in this study can be easily degraded in solution. Hence, features such as one-step fabrication, motion readout, and biodegradability render this micromotor an attractive candidate for sensing applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Motion-based pH sensing using spindle-like micromotors

Show Author's information Limei LiuYonggang DongYunyu SunMei LiuYajun SuHui ZhangBin Dong( )
Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center (CIC) of Suzhou Nano Science and TechnologySoochow UniversitySuzhouJiangsu215123China

Abstract

In this study, we report a spindle-like micromotor. This device, which is fabricated using a one-step electrospinning method, consists of biodegradable polycaprolactone and an anionic surfactant. Intriguingly, not only can the resulting micromotor move autonomously on the surface of water for a long period of time (~40 min) due to the Marangoni effect, but it also exhibits a pH sensing behavior due to variations in the surface tension caused by the release of surfactant under different pH conditions. More interestingly, we reveal that the motion-based pH sensing property is size-dependent, with smaller structures exhibiting a higher sensitivity. In addition, since polycaprolactone is a biodegradable material, the micromotor described in this study can be easily degraded in solution. Hence, features such as one-step fabrication, motion readout, and biodegradability render this micromotor an attractive candidate for sensing applications.

Keywords: micromotor, autonomous movement, self-propelling, motion-based sensing

References(48)

1

Ibele, M.; Mallouk, T. E.; Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem., Int. Ed. 2009, 48, 3308-3312.

2

Solovev, A. A.; Mei, Y. F.; Ureña, E. B.; Huang, G. S.; Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 2009, 5, 1688-1692.

3

Dong, B.; Zhou, T.; Zhang, H.; Li, C. Y. Directed self-assembly of nanoparticles for nanomotors. ACS Nano 2013, 7, 5192-5198.

4

Ju, G. N.; Cheng, M. J.; Xiao, M.; Xu, J. M.; Pan, K.; Wang, X.; Zhang, Y. J.; Shi, F. Smart transportation between three phases through a stimulus-responsive functionally cooperating device. Adv. Mater. 2013, 25, 2915-2919.

5

Gao, W.; Sattayasamitsathit, S.; Orozco, J.; Wang, J. Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum microtubes. J. Am. Chem. Soc. 2011, 133, 11862-11864.

6

Song, M. M.; Cheng, M. J.; Ju, G. N.; Zhang, Y. J.; Shi, F. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles. Adv. Mater. 2014, 26, 7059-7063.

7

Cheng, M. J.; Ju, G. N.; Zhang, Y. W.; Song, M. M.; Zhang, Y. J.; Shi, F. Supramolecular assembly of macroscopic building blocks through self-propelled locomotion by dissipating chemical energy. Small 2014, 10, 3907-3911.

8

Paxton, W. F.; Sen, A.; Mallouk, T. E. Motility of catalytic nanoparticles through self-generated forces. Chem. —Eur. J. 2005, 11, 6462-6470.

9

Chen, M.; Zang, J.; Xiao, D. Q.; Zhang, C.; Liu, F. Nanopumping molecules via a carbon nanotube. Nano Res. 2009, 2, 938-944.

10

Dai, Y. T.; Tang, C.; Guo, W. L. Simulation studies of a "nanogun" based on carbon nanotubes. Nano Res. 2008, 1, 176-183.

11

Magdanz, V.; Stoychev, G.; Ionov, L.; Sanchez, S.; Schmidt, O. G. Stimuli-responsive microjets with reconfigurable shape. Angew. Chem., Int. Ed. 2014, 53, 2673-2677.

12

Liu, L. M.; Liu, M.; Su, Y. J.; Dong, Y. G.; Zhou, W.; Zhang, L. N.; Zhang, H.; Dong, B.; Chi, L. F. Tadpole-like artificial micromotor. Nanoscale 2015, 7, 2276-2280.

13

Paxton, W. F.; Kistler, K. C.; Olmeda, C. C.; Sen, A.; St Angelo, S. K.; Cao, Y. Y.; Mallouk, T. E.; Lammert, P. E.; Crespi, V. H. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 2004, 126, 13424-13431.

14

Wu, Z. G.; Lin, X. K.; Wu, Y. J.; Si, T. Y.; Sun, J. M.; He, Q. Near-infrared light-triggered "on/off" motion of polymer multilayer rockets. ACS Nano 2014, 8, 6097-6105.

15

Mei, Y. F.; Huang, G. S.; Solovev, A. A.; Ureña, E. B.; Mönch, I.; Ding, F.; Reindl, T.; Fu, R. K. Y.; Chu, P. K.; Schmidt, O. G. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 2008, 20, 4085-4090.

16

Mou, F. Z.; Chen, C. R.; Zhong, Q.; Yin, Y. X.; Ma, H. R.; Guan, J. G. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(n-isopropylacrylamide) janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 2014, 6, 9897-9903.

17

Wu, Y. J.; Si, T. Y.; Lin, X. K.; He, Q. Near infrared-modulated propulsion of catalytic janus polymer multilayer capsule motors. Chem. Commun. 2015, 51, 511-514.

18

Zhao, G. J.; Khezri, B.; Sanchez, S.; Schmidt, O. G.; Webster, R. D.; Pumera, M. Corrosion of self-propelled catalytic microengines. Chem. Commun. 2013, 49, 9125-9127.

19

Kline, T. R.; Paxton, W. F.; Mallouk, T. E.; Sen, A. Catalytic nanomotors: Remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem., Int. Ed. 2005, 44, 744-746.

20

Wang, W.; Castro, L. A.; Hoyos, M.; Mallouk, T. E. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 2012, 6, 6122-6132.

21

Sundararajan, S.; Lammert, P. E.; Zudans, A. W.; Crespi, V. H.; Sen, A. Catalytic motors for transport of colloidal cargo. Nano Lett. 2008, 8, 1271-1276.

22

Wu, Y. J.; Wu, Z. G.; Lin, X. K.; He, Q.; Li, J. B. Autonomous movement of controllable assembled janus capsule motors. ACS Nano 2012, 6, 10910-10916.

23

Wu, Z. G.; Wu, Y. J.; He, W. P.; Lin, X. K.; Sun, J. M.; He, Q. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem., Int. Ed. 2013, 52, 7000-7003.

24

Soler, L.; Magdanz, V.; Fomin, V. M.; Sanchez, S.; Schmidt, O. G. Self-propelled micromotors for cleaning polluted water. ACS Nano 2013, 7, 9611-9620.

25

Kagan, D.; Calvo-Marzal, P.; Balasubramanian, S.; Sattayasamitsathit, S.; Manesh, K. M.; Flechsig, G. U.; Wang, J. Chemical sensing based on catalytic nanomotors: Motion-based detection of trace silver. J. Am. Chem. Soc. 2009, 131, 12082-12083.

26

Wu, J.; Balasubramanian, S.; Kagan, D.; Manesh, K. M.; Campuzano, S.; Wang, J. Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 2010, 1, 36.

27

Wang, H.; Zhao, G. J.; Pumera, M. Blood electrolytes exhibit a strong influence on the mobility of artificial catalytic microengines. Phys. Chem. Chem. Phys. 2013, 15, 17277-17280.

28

Moo, J. G. S.; Wang, H.; Zhao, G. J.; Pumera, M. Biomimetic artificial inorganic enzyme-free self-propelled microfish robot for selective detection of Pb2+ in water. Chem. —Eur. J. 2014, 20, 4292-4296.

29

Zhao, G. J.; Sanchez, S.; Schmidt, O. G.; Pumera, M. Poisoning of bubble propelled catalytic micromotors: The chemical environment matters. Nanoscale 2013, 5, 2909-2914.

30

Yu, X. P.; Li, Y. N.; Wu, J.; Ju, H. X. Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Anal. Chem. 2014, 86, 4501-4507.

31

Zörgiebel, F. M.; Pregl, S.; Römhildt, L.; Opitz, J.; Weber, W.; Mikolajick, T.; Baraban, L.; Cuniberti, G. Schottky barrier-based silicon nanowire pH sensor with live sensitivity control. Nano Res. 2014, 7, 263-271.

32

Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223-2253.

33

Zhang, W. N.; Lu, G.; Cui, C. L.; Liu, Y. Y.; Li, S. Z.; Yan, W. J.; Xing, C.; Chi, Y. R.; Yang, Y. H.; Huo, F. W. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 2014, 26, 4056-4060.

34

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310-316.

35

Wu, J.; Wang, N.; Wang, L.; Dong, H.; Zhao, Y.; Jiang, L. Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl. Mater. Interfaces 2012, 4, 3207-3212.

36

Li, Z. Y.; Wang, C. One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers; Springer-Verlag: Berlin Heidelberg, 2013.

37

Mamun, A.; Bazuin, C. G.; Prud'homme, R. E. Morphologies of various polycaprolactone/polymer blends in ultrathin films. Macromolecules 2015, 48, 1412-1417.

38

Zhao, G. J.; Seah, T. H.; Pumera, M. External-energy-independent polymer capsule motors and their cooperative behaviors. Chem. —Eur. J. 2011, 17, 12020-12026.

39

Zhang, H.; Duan, W. T.; Liu, L.; Sen, A. Depolymerization-powered autonomous motors using biocompatible fuel. J. Am. Chem. Soc. 2013, 135, 15734-15737.

40

Xiao, M.; Cheng, M. J.; Zhang, Y. J.; Shi, F. Combining the Marangoni effect and the pH-responsive superhydrophobicity-superhydrophilicity transition to biomimic the locomotion process of the beetles of genus stenus. Small 2013, 9, 2509-2514.

41

Xiao, M.; Jiang, C.; Shi, F. Design of a UV-responsive microactuator on a smart device for light-induced ON-OFF-ON motion. NPG Asia Mater. 2014, 6, e128.

42

Xiao, M.; Guo, X. P.; Cheng, M. J.; Ju, G. N.; Zhang, Y. J.; Shi, F. pH-responsive on-off motion of a superhydrophobic boat: Towards the design of a minirobot. Small 2014, 10, 859-865.

43

Gao, W.; D'Agostino, M.; Garcia-Gradilla, V.; Orozco, J.; Wang, J. Multi-fuel driven Janus micromotors. Small 2013, 9, 467-471.

44

Dey, K. K.; Bhandari, S.; Bandyopadhyay, D.; Basu, S.; Chattopadhyay, A. The pH taxis of an intelligent catalytic microbot. Small 2013, 9, 1916-1920.

45

Beattie, J. K.; Djerdjev, A. M.; Gray-Weale, A.; Kallay, N.; Lützenkirchen, J.; Preočanin, T.; Selmani, A. pH and the surface tension of water. J. Colloid Interface Sci. 2014, 422, 54-57.

46

de Castro, F. H. B.; Gálvez-Borrego, A.; Calero-de Hoces, M. Surface tension of aqueous solutions of sodium 1-dodecanesulfonate from 20 ℃ to 50 ℃ and pH between 4 and 12. J. Chem. Eng. Data 1999, 44, 142-143.

47

Ebbens, S.; Tu, M. H.; Howse, J. R.; Golestanian, R. Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers. Phys. Rev. E 2012, 85, 020401.

48

Dong, B.; Zhong, D. Y.; Chi, L. F.; Fuchs, H. Patterning of conducting polymers based on a random copolymer strategy: Toward the facile fabrication of nanosensors exclusively based on polymers. Adv. Mater. 2005, 17, 2736-2741.

Video
nr-9-5-1310_ESM_Video S1.avi
nr-9-5-1310_ESM_Video S2.avi
File
nr-9-5-1310_ESM.pdf (509.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 December 2015
Revised: 18 January 2016
Accepted: 20 January 2016
Published: 29 September 2016
Issue date: May 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21574094 and 21304064), the Natural Science Foundation of Jiangsu Province (Nos. BK20130292 and BK20150314), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Fund for Excellent Creative Research Teams of Jiangsu Higher Education Institutions and the project-sponsored by the Scientific Research Foundation for the returned overseas Chinese scholars, State Education Ministry.

Return