Journal Home > Volume 9 , Issue 5

The rational design of earth-abundant catalysts with excellent water splitting activities is important to obtain clean fuels for sustainable energy devices. In this study, mixed transition metal oxide nanoparticles encapsulated in nitrogendoped carbon (denoted as AB2O4@NC) were developed using a one-pot protocol, wherein a metal–organic complex was adopted as the precursor. As a proof of concept, MnCo2O4@NC was used as an electrocatalyst for water oxidation, and demonstrated an outstanding electrocatalytic activity with low overpotential to achieve a current density of 10 mA·cm-1 (η10 = 287 mV), small Tafel slope (55 mV·dec-1), and high stability (96% retention after 20 h). The excellent electrochemical performance benefited from the synergistic effects of the MnCo2O4 nanoparticles and nitrogen-doped carbon, as well as the assembled mesoporous nanowire structure. Finally, a highly stable all-solid-state supercapacitor based on MnCo2O4@NC was demonstrated (1.5% decay after 10, 000 cycles).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor

Show Author's information Chencheng Sun1Jun Yang1Ziyang Dai1Xuewan Wang2Yufei Zhang1Laiquan Li1Peng Chen2( )Wei Huang1( )Xiaochen Dong1( )
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore

Abstract

The rational design of earth-abundant catalysts with excellent water splitting activities is important to obtain clean fuels for sustainable energy devices. In this study, mixed transition metal oxide nanoparticles encapsulated in nitrogendoped carbon (denoted as AB2O4@NC) were developed using a one-pot protocol, wherein a metal–organic complex was adopted as the precursor. As a proof of concept, MnCo2O4@NC was used as an electrocatalyst for water oxidation, and demonstrated an outstanding electrocatalytic activity with low overpotential to achieve a current density of 10 mA·cm-1 (η10 = 287 mV), small Tafel slope (55 mV·dec-1), and high stability (96% retention after 20 h). The excellent electrochemical performance benefited from the synergistic effects of the MnCo2O4 nanoparticles and nitrogen-doped carbon, as well as the assembled mesoporous nanowire structure. Finally, a highly stable all-solid-state supercapacitor based on MnCo2O4@NC was demonstrated (1.5% decay after 10, 000 cycles).

Keywords: supercapacitor, oxygen evolution, transition metal oxide, nitrogen doped carbon

References(53)

1

Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519-3542.

2

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. -M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.

3

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.

4

Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837-1866.

5

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. nanotechnol. 2015, 10, 444-452.

6

Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072-1075.

7

Fabbri, E.; Habereder, A.; Waltar, K.; Kötz, R.; Schmidt, T. J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2014, 4, 3800-3821.

8

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399-404.

9

Liu, Y. Y.; Wang, H. T.; Lin, D. C.; Liu, C.; Hsu, P. -C.; Liu, W.; Chen, W.; Cui, Y. Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts. Energy Environ. Sci. 2015, 8, 1719-1724.

10

Merki, D.; Hu, X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878-3888.

11

Rosen, J.; Hutchings, G. S.; Jiao, F. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2013, 135, 4516-4521.

12

Wang, H. L.; Liang, Y. Y.; Gong, M.; Li, Y. G.; Chang, W.; Mefford, T.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F. J. An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat. Commun. 2012, 3, 917.

13

Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. D. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488-1504.

14

Zhang, Y. F.; Li, L. Q.; Su, H. Q.; Huang, W.; Dong, X. C. Binary metal oxide: Advanced energy storage materials in supercapacitors. J. Mater. Chem. A 2015, 3, 43-59.

15

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987.

16

Zhou, R. F.; Jaroniec, M.; Qiao, S. Z. Nitrogen-doped carbon electrocatalysts decorated with transition metals for the oxygen reduction reaction. ChemCatChem 2015, 7, 3808-3817.

17

Padmanathan, N.; Selladurai, S. Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor. Ionics 2014, 20, 479-487.

18

Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849-15857.

19

Liu, M. M.; He, S. J.; Chen, W. Co3O4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H2O2 detection. Nanoscale 2014, 6, 11769-11776.

20

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.

21

Zhang, P.; Sun, F.; Xiang, Z. H.; Shen, Z. G.; Yun, J.; Cao, D. P. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 442-450.

22

Wood, K. N.; O'Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 2014, 7, 1212-1249.

23

Wang, X. W.; Sun, G. Z.; Routh, P.; Kim, D. -H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067-7098.

24

Zhang, J.; Xia, Z.; Dai, L. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564.

25

Liu, M. M.; Zhang, R. Z.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117-5160.

26

Xia, B. Y.; Yan, Y.; Wang, X.; Lou, X. W. D. Recent progress on graphene-based hybrid electrocatalysts. Mater. Horiz. 2014, 1, 379-399.

27

Chen, S.; Qiao, S. -Z. Hierarchically porous nitrogen-doped graphene-NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano 2013, 7, 10190-10196.

28

Hou, Y.; Li, J. Y.; Wen, Z. H.; Cui, S. M.; Yuan, C.; Chen, J. H. Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 2015, 12, 1-8.

29

Wang, Y.; Shi, Y. M.; Zhao, C. X.; Wong, J. I.; Sun, X. W.; Yang, H. Y. Printed all-solid flexible microsupercapacitors: Towards the general route for high energy storage devices. Nanotechnology 2014, 25, 094010.

30

Sun, C. C.; Ma, M. Z.; Yang, J.; Zhang, Y. F.; Chen, P.; Huang, W.; Dong, X. C. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. Sci. Rep. 2014, 4, 7054.

31

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

32

Li, Z. P.; Mi, Y. J.; Liu, X. H.; Liu, S.; Yang, S. R.; Wang, J. Q. Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J. Mater. Chem. 2011, 21, 14706-14711.

33

Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517-3523.

34

Yang, Y.; Lun, Z. Y.; Xia, G. L.; Zheng, F. C.; He, M. N.; Chen, Q. W. Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ. Sci. 2015, 8, 3563-3571.

35

Sharifi, T.; Hu, G. Z.; Jia, X. E.; Wågberg, T. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 2012, 6, 8904-8912.

36

Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.

37

Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem. 2014, 126, 4461-4465.

38

Silva, R.; Voiry, D.; Chhowalla, M.; Asefa, T. Efficient metal-free electrocatalysts for oxygen reduction: Polyaniline-derived N- and O-doped mesoporous carbons. J. Am. Chem. Soc. 2013, 135, 7823-7826.

39

Li, H. H.; Xu, R. Y.; Wang, Y. P.; Qian, B. B.; Wang, H. B.; Chen, L.; Jiang, H. B.; Yang, Y. L.; Xu, Y. Y. In situ synthesis of hierarchical mesoporous Fe3O4@C nanowires derived from coordination polymers for high-performance lithium-ion batteries. RSC Adv. 2014, 4, 51960-51965.

40

Ren, J. W.; Antonietti, M.; Fellinger, T. P. Efficient water splitting using a simple Ni/N/C paper electrocatalyst. Adv. Energy Mater. 2015, 5, 1401660.

41

Song, H. W.; Li, N.; Cui, H.; Wen, X.; Wei, X. L.; Wang, C. X. Significantly improved high-rate Li-ion batteries anode by encapsulating tin dioxide nanocrystals into mesotunnels. CrystEngComm 2013, 15, 8537-8543.

42

Li, N.; Song, H. W.; Cui, H.; Yang, G. W.; Wang, C. X. Self-assembled growth of Sn@CNTs on vertically aligned graphene for binder-free high Li-storage and excellent stability. J. Mater. Chem. A 2014, 2, 2526-2537.

43

Han, Y. Z.; Tang, D.; Yang, Y. M.; Li, C. X.; Kong, W. Q.; Huang, H.; Liu, Y.; Kang, Z. H. Non-metal single/dual doped carbon quantum dots: A general flame synthetic method and electro-catalytic properties. Nanoscale 2015, 7, 5955-5962.

44

Wang, B.; Zhu, T.; Wu, H. B.; Xu, R.; Chen, J. S.; Lou, X. W. D. Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH)·0.11H2O nanowires with improved supercapacitive properties. Nanoscale 2012, 4, 2145-2149.

45

Kong, D. Z.; Cheng, C. W.; Wang, Y.; Wong, J. I.; Yang, Y. P.; Yang, H. Y. Three-dimensional Co3O4@C@Ni3S2 sandwich-structured nanoneedle arrays: Towards high-performance flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 16150-16161.

46

Wang, Q. F.; Xu, J.; Wang, X. F.; Liu, B.; Hou, X. J.; Yu, G.; Wang, P.; Chen, D.; Shen, G. Z. Core-shell CuCo2O4@MnO2 nanowires on carbon fabrics as high-performance materials for flexible, all-solid-state, electrochemical capacitors. ChemElectroChem 2014, 1, 559-564.

47

He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174-182.

48

Yuan, L. Y.; Lu, X. -H.; Xiao, X.; Zhai, T.; Dai, J. J.; Zhang, F. C.; Hu, B.; Wang, X.; Gong, L.; Chen, J. et al. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. Acs Nano 2012, 6, 656-661.

49

Liao, Q. Y.; Li, N.; Jin, S. X.; Yang, G. W.; Wang, C. X. All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 2015, 9, 5310-5317.

50

Xu, Y. X.; Wu, Q.; Sun, Y. Q.; Bai, H.; Shi, G. Q. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 2010, 4, 7358-7362.

51

Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X. L.; Müllen, K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 2012, 24, 5130-5135.

52

Song, H. W.; Shen, L. S.; Wang, C. X. Template-free method towards quadrate Co3O4 nanoboxes from cobalt coordination polymer nano-solids for high performance lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 20597-20604.

53

Yang, G. Z.; Cui, H.; Yang, G. W.; Wang, C. X. Self-assembly of Co3V2O8 multilayered nanosheets: Controllable synthesis, excellent Li-storage properties, and investigation of electrochemical mechanism. ACS Nano 2014, 8, 4474-4487.

File
nr-9-5-1300_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 December 2015
Revised: 17 January 2016
Accepted: 20 January 2016
Published: 29 September 2016
Issue date: May 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The project is supported by the National Basic Research Program of China (No. 2014CB660808), Jiangsu Provincial Founds for Distinguished Young Scholars (No. BK20130046), the National Natural Science Foundation of China (Nos. 61525402 and 21275076), QingLan Project, Program for New Century Excellent Talents in University (No. NCET-13-0853), Synergetic Innovation Center for Organic Electronics and Information Displays, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), SERC Grant (No. 1021700142) from A*STAR, Singapore, the scholarship from China Scholarships Council (No. 201508320304), the Jiangsu Provincial Founds for Graduate Student Innovation Project (No. KYLX15_0821).

Return