Journal Home > Volume 9 , Issue 5

Recently, substantial attention has been paid to the strain sensitivity of the carbon nanotubes' (CNTs') electronic properties. In this study, the relationships between the geometric structures and electronic states of zigzag CNTs under uniaxial compressive strain were investigated. We found that different factors dominate the electronic states of zigzag CNTs depending on the strain regions: the initial stage of the strain loading, which lasts until column-buckling deformation begins, and the strain regions corresponding to column-and shell-buckling deformations. Because shell-buckling deformation significantly increases the π-orbital angle, the angle between the ρ orbital axis vectors of adjacent atoms, strong localization of the density of states (LDOS) occurs in the buckled area. We also analyzed the current able to pass through deformed CNTs using a tight-binding-based Green's function approach and determined that the current can be significantly suppressed by applying uniaxial compressive strain. Our method of predicting the electronic state of a deformed CNT based on the π-orbital angle is expected to be useful for predicting the electronic properties of CNT-based electronic devices and sensors.


menu
Abstract
Full text
Outline
About this article

Effects of uniaxial compressive strain on the electronic-transport properties of zigzag carbon nanotubes

Show Author's information Masato Ohnishi( )Ken SuzukiHideo Miura( )
Fracture and Reliability Research InstituteGraduate School of Engineering, Tohoku University, Sendai, 980-8579Japan

Present address: Department of Mechanical Engineering, The University of Tokyo, Bunkyo-Ku, Tokyo 113-8656, Japan

Abstract

Recently, substantial attention has been paid to the strain sensitivity of the carbon nanotubes' (CNTs') electronic properties. In this study, the relationships between the geometric structures and electronic states of zigzag CNTs under uniaxial compressive strain were investigated. We found that different factors dominate the electronic states of zigzag CNTs depending on the strain regions: the initial stage of the strain loading, which lasts until column-buckling deformation begins, and the strain regions corresponding to column-and shell-buckling deformations. Because shell-buckling deformation significantly increases the π-orbital angle, the angle between the ρ orbital axis vectors of adjacent atoms, strong localization of the density of states (LDOS) occurs in the buckled area. We also analyzed the current able to pass through deformed CNTs using a tight-binding-based Green's function approach and determined that the current can be significantly suppressed by applying uniaxial compressive strain. Our method of predicting the electronic state of a deformed CNT based on the π-orbital angle is expected to be useful for predicting the electronic properties of CNT-based electronic devices and sensors.

Keywords: carbon nanotube, strain, buckling deformation, Green's function method, electronic-transport property

References(39)

1

Stampfer, C.; Jungen, A.; Linderman, R.; Obergfell, D.; Roth, S.; Hierold, C. Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett. 2006, 6, 1449-1453.

2

Nozaki, T.; Suzuki, K.; Miura, H. Highly sensitive two dimensional tactile sensor using multi-walled carbon nanotube. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, Canada, 2014, pp V010T13A018.

3

Waters, J. F.; Guduru, P. R.; Jouzi, M.; Xu, J. M.; Hanlon, T.; Suresh, S. Shell buckling of individual multiwalled carbon nanotubes using nanoindentation. Appl. Phys. Lett. 2005, 87, 103109.

4

Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. Structural flexibility of carbon nanotubes. J. Chem. Phys. 1996, 104, 2089-2092.

5

Bower, C.; Rosen, R.; Jin, L.; Han, J.; Zhou, O. Deformation of carbon nanotubes in nanotube-polymer composites. Appl. Phys. Lett. 1999, 74, 3317-3319.

6

Sun, D. -M.; Timmermans, M. Y.; Tian, Y.; Nsibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156-161.

7

Nakai, Y.; Honda, K.; Yanagi, K.; Kataura, H.; Kato, T.; Yamamoto, T.; Maniwa, Y. Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film. Appl. Phys. Express 2014, 7, 025103.

8

Esfarjani, K.; Zebarjadi, M.; Kawazoe, Y. Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation. Phys. Rev. B 2006, 73, 085406.

9

Yilmazoglu, O.; Popp, A.; Pavlidis, D.; Schneider, J. J.; Garth, D.; Schüttler, F.; Batternberg, G. Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing. Nanotechnology 2012, 23, 085501.

10

Cullinan, M. A.; Culpepper, M. L. Carbon nanotubes as piezoresistive microelectromechanical sensors: Theory and experiment. Phys. Rev. B 2010, 82, 115428.

11

Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296-301.

12

Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 1992, 60, 2204-2206.

13

Yang, L.; Han, J. Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 2000, 85, 154-157.

14

Cocco, G.; Cadelano, E.; Colombo, L. Gap opening in graphene by shear strain. Phys. Rev. B 2010, 81, 241412.

15

Park, C. -J.; Kim, Y. -H.; Chang, K. J. Band-gap modification by radial deformation in carbon nanotubes. Phys. Rev. B 1999, 60, 10656-10659.

16

Lammert, P. E.; Zhang, P. H.; Crespi, V. H. Gapping by squashing: Metal-insulator and insulator-metal transitions in collapsed carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2453-2456.

17

Mazzoni, M. S. C.; Chacham, H. Bandgap closure of a flattened semiconductor carbon nanotube: A first-principles study. Appl. Phys. Lett. 2000, 76, 1561-1563.

18

Gülseren, O.; Yildirim, T.; Ciraci, S.; Kılıç, Ç. Reversible band-gap engineering in carbon nanotubes by radial deformation. Phys. Rev. B 2002, 65, 155410.

19

Lu, J. -Q.; Wu, J.; Duan, W. H.; Liu, F.; Zhu, B. F.; Gu, B. L. Metal-to-semiconductor transition in squashed armchair carbon nanotubes. Phys. Rev. Lett. 2003, 90, 156601.

20

Nishidate, K.; Hasegawa, M. Universal band gap modulation by radial deformation in semiconductor single-walled carbon nanotubes. Phys. Rev. B 2008, 78, 195403.

21

Ohnishi, M.; Suzuki, K.; Miura, H. Quantitative evaluation of orbital hybridization in carbon nanotubes under radial deformation using π-orbital axis vector. AIP Adv. 2015, 5, 047124.

22

Kutana, A.; Giapis, K. P. Transient deformation regime in bending of single-walled carbon nanotubes. Phys. Rev. Lett. 2006, 97, 245501.

23

Shima, H. Buckling of carbon nanotubes: A state of the art review. Materials 2011, 5, 47-84.

24

Rochefort, A.; Avouris, P.; Lesage, F.; Salahub, D. R. Electrical and mechanical properties of distorted carbon nanotubes. Phys. Rev. B 1999, 60, 13824-13830.

25

Lu, J. -Q.; Wu, J.; Duan, W. H.; Gu, B. -L. Effects of finite deformed length in carbon nanotubes. Appl. Phys. Lett. 2004, 84, 4203-4205.

26

Maiti, A.; Svizhenko, A.; Anantram, M. P. Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality. Phys. Rev. Lett. 2002, 88, 126805.

27

Sasaki, K. -I.; Kawazoe, Y.; Saito, R. Local energy gap in deformed carbon nanotubes. Prog. Theor. Phys. 2005, 113, 463-480.

28

Charlier, J. -C.; Blase, X.; Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 2007, 79, 677-732.

29

Feliciano, J.; Tang, C.; Zhang, Y. Y.; Chen C. F. Aspect ratio dependent buckling mode transition in single-walled carbon nanotubes under compression. J. Appl. Phys. 2011, 109, 084323.

30

Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys.: Condens. Matter. 2002, 14, 783-802.

31

Ni, B.; Sinnott, S. B.; Mikulski, P. T.; Harrison, J. A. Compression of carbon nanotubes filled with C60, CH4, or Ne: Predictions from molecular dynamics simulations. Phys. Rev. Lett. 2002, 88, 205505.

32

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1-19.

33

Haddon, R. C. Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules. Science 1993, 261, 1545-1550.

34

Haddon, R. C. Comment on the relationship of the pyramiddalization angle at a conjugated carbon atom to the σ bond angles. J. Phys. Chem. A 2001, 105, 4164-4165.

35

Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, 1997.

36

Porezag, D.; Frauenheim, T.; Köhler, T.; Seifert, G.; Kaschner, R. Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Phys. Rev. B 1995, 51, 12947-12957.

37

Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 1985, 31, 6207-6215.

38

Farajian, A. A.; Yakobson, B. I.; Mizuseki, H.; Kawazoe, Y. Electronic transport through bent carbon nanotubes: Nanoelectromechanical sensors and switches. Phys. Rev. B 2003, 67, 205423.

39

Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Liu, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. -Y. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 2000, 405, 769-772.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2015
Revised: 12 January 2016
Accepted: 14 January 2016
Published: 29 September 2016
Issue date: May 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by a Grant-in-Aid from the Japan Society for the Promotion of Science Fellows (No. 12J03435) and has been performed under the inter-university cooperative research program of the Center for Computational Materials Science, Institute for Materials Research, Tohoku University (Proposal No. ~14S0205).

Return