Journal Home > Volume 9 , Issue 5

The geometric size and distribution of magnetic nanoparticles are critical to the morphology of graphene (GN) nanocomposites, and thus they can affect the capacity and cycling performance when these composites are used as anode materials in lithium-ion batteries (LiBs). In this work, Fe3O4 nanorods were deposited onto fully extended nitrogen-doped GN sheets from a binary precursor in two steps, a hydrothermal process and an annealing process. This route effectively tuned the Fe3O4 nanorod size distribution and prevented their aggregation. The transformation of the binary precursor was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). XPS analysis indicated the presence of N-doped GN sheets, and that the magnetic nanocrystals were anchored and uniformly distributed on the surface of the flattened N-doped GN sheets. As a high performance anode material, the structure was beneficial for electron transport and exchange, resulting in a large reversible capacity of 929 mA·h·g–1, high-rate capability, improved cycling stability, and higher electrical conductivity. Not only does the result provide a strategy for extending GN composites for use as LiB anode materials, but it also offers a route for the preparation of other oxide nanorods from binary precursors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries

Show Author's information Jiqing Jiao1( )Wenda Qiu2Jianguo Tang1Liuping Chen2Laiying Jing1
College of Materials Science and EngineeringNational Base of International S. & T. Cooperation on Hybrid Materials and Growing Base for State Key LaboratoryQingdao University308 Ningxia RoadQingdao266071China
KLGHEI of Environment and Energy ChemistrySchool of Chemistry and Chemical EngineeringSun Yat-sen UniversityGuangzhou510275China

Abstract

The geometric size and distribution of magnetic nanoparticles are critical to the morphology of graphene (GN) nanocomposites, and thus they can affect the capacity and cycling performance when these composites are used as anode materials in lithium-ion batteries (LiBs). In this work, Fe3O4 nanorods were deposited onto fully extended nitrogen-doped GN sheets from a binary precursor in two steps, a hydrothermal process and an annealing process. This route effectively tuned the Fe3O4 nanorod size distribution and prevented their aggregation. The transformation of the binary precursor was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). XPS analysis indicated the presence of N-doped GN sheets, and that the magnetic nanocrystals were anchored and uniformly distributed on the surface of the flattened N-doped GN sheets. As a high performance anode material, the structure was beneficial for electron transport and exchange, resulting in a large reversible capacity of 929 mA·h·g–1, high-rate capability, improved cycling stability, and higher electrical conductivity. Not only does the result provide a strategy for extending GN composites for use as LiB anode materials, but it also offers a route for the preparation of other oxide nanorods from binary precursors.

Keywords: graphene, Fe3O4, N-doped, lithium-ion batteries, anode materials

References(42)

1

Xing, Z.; Ju, Z. C.; Yang, J.; Xu, H. Y.; Qian, Y. T. One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res. 2012, 5, 477-485.

2

Liu, N.; Pan, Z. H.; Fu, L.; Zhang, C. H.; Dai, B. Y.; Liu, Z. F. The origin of wrinkles on transferred graphene. Nano Res. 2011, 4, 996-1004.

3

Lu, Y.; Guo, J. Band gap of strained graphene nanoribbons. Nano Res. 2010, 3, 189-199.

4

Mukherjee, R.; Thomas, A. V.; Krishnamurthy, A.; Koratkar, N. Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 2012, 6, 7867-7878.

5

Shen, J. F.; Shi, M.; Li, N.; Yan, B.; Ma, H. W.; Hu, Y. Z.; Ye, M. X. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 2010, 3, 339-349.

6

Meng, L. R.; Chen, W. M.; Tan, Y. W.; Zou, L.; Chen, C. P.; Zhou, H. P.; Peng, Q.; Li, Y. D. Fe3O4 octahedral colloidal crystals. Nano Res. 2011, 4, 370-375.

7

Ngamchuea, K.; Tschulik, K.; Compton, R. G. Magnetic control: Switchable ultrahigh magnetic gradients at Fe3O4 nanoparticles to enhance solution-phase mass transport. Nano Res. 2015, 8, 3293-3306.

8

Meng, S.; Greenlee, L. F.; Shen, Y. R.; Wang, E. G. Basic science of water: Challenges and current status towards a molecular picture. Nano Res. 2015, 8, 3085-3110.

9

Zhao, L.; Gao, M. M.; Yue, W. B.; Jiang, Y.; Wang, Y.; Ren, Y.; Hu, F. Q. Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 9709-9715.

10

Wei, W.; Yang, S. B.; Zhou, H. X.; Lieberwirth, I.; Feng, X. L.; Müllen, K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909-2914.

11

Wang, R. H.; Xu, C. H.; Sun, J.; Gao, L.; Lin, C. C. Flexible free-standing hollow Fe3O4/graphene hybrid films for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 1794-1800.

12

Jiang, Y.; Jiang, Z. J.; Yang, L. F.; Cheng, S.; Liu, M. L. A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J. Mater. Chem. A 2015, 3, 11847-11856.

13

Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188-1193.

14

Wei, D.; Liu, Y.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752-1758.

15

Qiu, W. D.; Jiao, J. Q.; Xia, J.; Zhong, H. M.; Chen, L. P. Phosphorus-doped graphene-wrapped molybdenum disulfide hollow spheres as anode material for lithium-ion batteries. RSC Adv. 2014, 4, 50529-50535.

16

Zhou, K. F.; Zhu, Y. H.; Yang, X. L.; Li, C. Z. One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New J. Chem. 2010, 34, 2950-2955.

17

Li, X. Y.; Huang, X. L.; Liu, D. P.; Wang, X.; Song, S. Y.; Zhou, L.; Zhang, H. J. Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C 2011, 115, 21567-21573.

18

Li, L.; Kovalchuk, A.; Fei, H. L.; Peng, Z. W.; Li, Y. L.; Kim, N. D.; Xiang, C. S.; Yang, Y.; Ruan, G. D.; Tour, J. M. Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv. Energy Mater. 2015, 5, 1500171.

19

Teymourian, H.; Salimi, A.; Khezrian, S. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron. 2013, 49, 1-8.

20

Behera, S. K. Enhanced rate performance and cyclic stability of Fe3O4-graphene nanocomposites for Li ion battery anodes. Chem. Commun. 2011, 47, 10371-10373.

21

Zhu, C. Z.; Guo, S. J.; Fang, Y. X.; Han, L.; Wang, E. K.; Dong, S. J. One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res. 2011, 4, 648-657.

22

Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. Radical addition of perfluorinated alkyl iodides to multi-layered graphene and single-walled carbon nanotubes. Nano Res. 2010, 3, 138-145.

23

Su, J.; Cao, M. H.; Ren, L.; Hu, C. W. Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. J. Phys. Chem. C 2011, 115, 14469-14477.

24

Jiao, J. Q.; Xia, J.; Qiu, W. D.; Tang, J. G.; Li, G. R.; Kuang, D. B.; Tong, Y. X.; Chen, L. P. Hierarchical tree-like heterostructure arrays for enhanced photoeletrochemical activity. Electrochim. Acta 2014, 136, 217-222.

25

Jiao, J. Q.; Tang, J. G.; Wang, G. M.; Wang, Y.; Huang, L. J.; Huang, Z.; Liu, J. X.; Zhu, Y. K.; Belfiore, L. A. Synthesis of photocatalytic hematite nanotube array using a template-free solvothermal approach. RSC Adv. 2015, 5, 60920-60925.

26

Wang, G. M.; Ling, Y. C.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett. 2011, 11, 3503-3509.

27

Ma, R. G.; Wang, M.; Tao, P. P.; Wang, Y.; Cao, C. W.; Shan, G. C.; Yang, S. L.; Xi, L. J.; Chung, J. C. Y.; Lu, Z. G. Fabrication of FeF3 nanocrystals dispersed into a porous carbon matrix as a high performance cathode material for lithium ion batteries. J. Mater. Chem. A 2013, 1, 15060-15067.

28

Li, B. J.; Cao, H. Q.; Shao, J.; Qu, M. Z.; Warner, J. H. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J. Mater. Chem. 2011, 21, 5069-5075.

29

Kwon, S. K.; Kimijima, K.; Kanie, K.; Muramatsu, A.; Suzuki, S.; Matsubara, E.; Waseda, Y. Effect of silicate ions on conversion of ferric hydroxide to β-FeOOH and α-Fe2O3. Mater. Trans. 2005, 46, 155-158.

30

He, H. K.; Gao, C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces 2010, 2, 3201-3210.

31

Li, L. S.; Yu, Y. H.; Meng, F.; Tan, Y. Z.; Hamers, R. J.; Jin, S. Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Nano Lett. 2012, 12, 724-731.

32

Lei, C.; Han, F.; Li, D.; Li, W. C.; Sun, Q.; Zhang, X. Q.; Lu, A. H. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. Nanoscale 2013, 5, 1168-1175.

33

Zubir, N. A.; Yacou, C.; Motuzas, J.; Zhang, X. W.; Diniz da Costa, J. C. Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Sci. Rep. 2014, 4, 4594.

34

Wang, J. -Z.; Zhong, C.; Wexler, D.; Idris, N. H.; Wang, Z. X.; Chen, L. Q.; Liu, H. K. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem. —Eur. J. 2011, 17, 661-667.

35

Jiao, J. Q.; Tang, J. G.; Gao, W.; Kuang, D. B.; Tong, Y. X.; Chen, L. P. Plasmonic silver nanoparticles matched with vertically aligned nitrogen-doped titanium dioxide nanotube arrays for enhanced photoelectrochemical activity. J. Power Sources 2015, 274, 464-470.

36

Chen, Y. J.; Xiao, G.; Wang, T. S.; Ouyang, Q. Y.; Qi, L. H.; Ma, Y.; Gao, P.; Zhu, C. -L.; Cao, M. S.; Jin, H. B. Porous Fe3O4/carbon core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2011, 115, 13603-13608.

37

Wang, Q. H.; Jiao, L. F.; Du, H. M.; Wang, Y. J.; Yuan, H. T. Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J. Power Sources 2014, 245, 101-106.

38

Chen, D. Y.; Ji, G.; Ma, Y.; Lee, J. Y.; Lu, J. M. Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 3078-3083.

39

Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136-6143.

40

Ji, L. W.; Tan, Z. K.; Kuykendall, T. R.; Aloni, S.; Xun, S. D.; Lin, E.; Battaglia, V.; Zhang, Y. Q. Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Phys. Chem. Chem. Phys. 2011, 13, 7170-7177.

41

Jing, L. Y.; Fu, A. P.; Li, H. L.; Liu, J. Q.; Guo, P. Z.; Wang, Y. Q.; Zhao, X. S. One-step solvothermal preparation of Fe3O4/graphene composites at elevated temperature and their application as anode materials for lithium-ion batteries. RSC Adv. 2014, 4, 59981-59989.

42

Li, N.; Chen, Z. Q.; Ren, W. C.; Li, F.; Cheng, H. M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. USA 2012, 109, 17360-17365.

File
nr-9-5-1256_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 November 2015
Revised: 23 December 2015
Accepted: 14 January 2016
Published: 29 September 2016
Issue date: May 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The work was financially supported by the National Natural Science Foundation (No. 51403114), Natural Science Foundation of Shandong Province (No. BS2014CL025), China Postdoctoral Science Foundation (No. 2014M56053), Postdoctoral Applied Research Fundation of Qingdao City, Applied Basic Research Programs of Qingdao (No. 14-2-4-62-jch), and Postdoctoral Innovation Funds of Shandong Province (No. 201402015).

Return