Journal Home > Volume 9 , Issue 4

We have exploited a new and distinctive combination method that "disperses" elemental Pd into CuS nanoplates. Pd was successfully dispersed by means of the concomitant transformation of CuS into an amorphous sulfide, which formed an intimate metal–sulfide contact via cation exchange and underwent a subsequent reduction. A series of such Pd-dispersed CuS hetero-nanoplates were synthesized with tailored proportions and compositions. By efficient utilization of noble metal atoms and stable anchored active sites, the optimal catalytic performance for the semihydrogenation of phenylacetylene, a probe reaction, was achieved with high selectivity, activity, and stability. We believe that the synthetic strategy described in our study is a feasible means of developing effective metal–sulfide catalysts for organic reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene

Show Author's information Yu WangZheng ChenRongan ShenXing CaoYueguang ChenChen ChenDingsheng WangQing Peng( )Yadong Li( )
Department of Chemistry and Collaborative Innovation CenterNanomaterial Science and EngineeringTsinghua UniversityBeijing100084China

Abstract

We have exploited a new and distinctive combination method that "disperses" elemental Pd into CuS nanoplates. Pd was successfully dispersed by means of the concomitant transformation of CuS into an amorphous sulfide, which formed an intimate metal–sulfide contact via cation exchange and underwent a subsequent reduction. A series of such Pd-dispersed CuS hetero-nanoplates were synthesized with tailored proportions and compositions. By efficient utilization of noble metal atoms and stable anchored active sites, the optimal catalytic performance for the semihydrogenation of phenylacetylene, a probe reaction, was achieved with high selectivity, activity, and stability. We believe that the synthetic strategy described in our study is a feasible means of developing effective metal–sulfide catalysts for organic reactions.

Keywords: palladium, amorphous, hydrogenation, metal–sulfide, hetero-nanoplates

References(44)

1

Banin, U.; Ben-Shahar, Y.; Vinokurov, K. Hybrid semiconductor–metal nanoparticles: From architecture to function. Chem. Mater. 2014, 26, 97–110.

2

Buck, M. R.; Schaak, R. E. Emerging strategies for the total synthesis of inorganic nanostructures. Angew. Chem., Int. Ed. 2013, 52, 6154–6178.

3

Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4897.

4

Yang, J.; Ying, J. Y. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat. Mater. 2009, 8, 683–689.

5

Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Nonepitaxial growth of hybrid core–shell nanostructures with large lattice mismatches. Science 2010, 327, 1634–1638.

6

Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387–1392.

7

Liu, M. H.; Zeng, H. C. General synthetic approach to heterostructured nanocrystals based on noble metals and I–VI, Ⅱ–VI, and I–Ⅲ–VI metal chalcogenides. Langmuir 2014, 30, 9838–9849.

8

Lee, S. -U.; Hong, J. W.; Choi, S. -I.; Han, S. W. Universal sulfide-assisted synthesis of M–Ag heterodimers (M = Pd, Au, Pt) as efficient platforms for fabricating metal–semiconductor heteronanostructures. J. Am. Chem. Soc. 2014, 136, 5221– 5224.

9

Schlicke, H.; Ghosh, D.; Fong, L. -K.; Xin, H. L.; Zheng, H. M.; Alivisatos, A. P. Selective placement of faceted metal tips on semiconductor nanorods. Angew. Chem., Int. Ed. 2013, 52, 980–982.

10

Habas, S. E.; Yang, P. D.; Mokari, T. Selective growth of metal and binary metal tips on cds nanorods. J. Am. Chem. Soc. 2008, 130, 3294–3295.

11

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

12

Lavieville, R.; Zhang, Y.; Casu, A.; Genovese, A.; Manna, L.; Di Fabrizio, E.; Krahne, R. Charge transport in nanoscale "all-inorganic" networks of semiconductor nanorods linked by metal domains. ACS Nano 2012, 6, 2940–2947.

13

Galian, R. E.; Diaz, P.; Ribera, A.; Rincón-Bertolín, A.; Agouram, S.; Pérez-Prieto, J. Controlled building of CdSe@ZnS/Au and CdSe@ZnS/Au2S/Au nanohybrids. Nano Res. 2015, 8, 2271–2287.

14

Shehzad, M. A.; Hussain, S.; Khan, M. F.; Eom, J.; Jung, J.; Seo, Y. A progressive route for tailoring electrical transport in MoS2. Nano Res. 2015, 8, 1–12.

15

Weng, L.; Zhang, H.; Govorov, A. O.; Ouyang, M. Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis. Nat. Commun. 2014, 5, 4792.

16

Zhuang, T. -T.; Liu, Y.; Sun, M.; Jiang, S. -L.; Zhang, M. -W.; Wang, X. -C.; Zhang, Q.; Jiang, J.; Yu, S. -H. A unique ternary semiconductor–(semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem. 2015, 127, 11657–11662.

17

Ha, E. N.; Lee, L. Y. S.; Wang, J. C.; Li, F. H.; Wong, K. -Y.; Tsang, S. C. E. Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2ZnSnS4 nanostructure. Adv. Mater. 2014, 26, 3496–3500.

18

Yang, J.; Ying, J. Y. Nanocomposites of Ag2S and noble metals. Angew. Chem., Int. Ed. 2011, 50, 4637–4643.

19

Feng, Y.; Liu, H.; Wang, P. F.; Ye, F.; Tan, Q. Q.; Yang, J. Enhancing the electrocatalytic property of hollow structured platinum nanoparticles for methanol oxidation through a hybrid construction. Sci. Rep. 2014, 4, 6204.

20

Zhang, Y. S.; Shi, J. P.; Han, G. F.; Li, M. J.; Ji, Q. Q.; Ma, D. L.; Zhang, Y.; Li, C.; Lang, X. Y.; Zhang, Y. F. et al. Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Res. 2015, 8, 2881–2890.

21

Ding, X. G.; Liow, C. H.; Zhang, M. X.; Huang, R. J.; Li, C. Y.; Shen, H.; Liu, M. Y.; Zou, Y.; Gao, N.; Zhang, Z. J. et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684–15693.

22

Sang, W.; Zheng, T. T.; Wang, Y. C.; Li, X.; Zhao, X.; Zeng, J.; Hou, J. G. One-step synthesis of hybrid nanocrystals with rational tuning of the morphology. Nano Lett. 2014, 14, 6666–6671.

23

Cui, J. B.; Li, Y. J.; Liu, L.; Chen, L.; Xu, J.; Ma, J. W.; Fang, G.; Zhu, E. B.; Wu, H.; Zhao, L. X. et al. Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett. 2015, 15, 6295–6301.

24

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

25

Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Wang, D. S.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res. 2015, 8, 140–155.

26

Lévy, F. Intercalated layered materials. In Physics and Chemistry of Materials with Layered Structures. Springer: Netherlands, 1979, Vol. 6.

27

Du, Y. P.; Yin, Z. Y.; Zhu, J. X.; Huang, X.; Wu, X. -J.; Zeng, Z. Y.; Yan, Q. Y.; Zhang, H. A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 2012, 3, 1177.

28

Teranishi, T.; Inoue, Y.; Nakaya, M.; Oumi, Y.; Sano, T. Nanoacorns: Anisotropically phase-segregated CoPd sulfide nanoparticles. J. Am. Chem. Soc. 2004, 126, 9914–9915.

29

Teranishi, T.; Saruyama, M.; Nakaya, M.; Kanehara, M. Anisotropically phase-segregated Pd–Co–Pd sulfide nanoparticles formed by fusing two Co–Pd sulfide nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 1713–1715.

30

Park, K. -H.; Lee, Y. W.; Kim, D.; Lee, K.; Lee, S. B.; Han, S. W. Synthesis and photocatalytic properties of Cu2S–Pd4S hybrid nanoplates. Chem.Eur. J. 2012, 18, 5874–5878.

31

Shemesh, Y.; Macdonald, J. E.; Menagen, G.; Banin, U. Synthesis and photocatalytic properties of a family of CdS– PdX hybrid nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 1185–1189.

32

Liu, P.; Hensen, E. J. M. Highly efficient and robust Au/ MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 2013, 135, 14032–14035.

33

Tang, A. W.; Qu, S. C.; Li, K.; Hou, Y. B.; Teng, F.; Cao, J.; Wang, Y. S.; Wang, Z. G. One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals. Nanotechnology 2010, 21, 285602.

34

Mott, D.; Yin, J.; Engelhard, M.; Loukrakpam, R.; Chang, P.; Miller, G.; Bae, I. -T.; Chandra Das, N.; Wang, C. M.; Luo, J. et al. From ultrafine thiolate-capped copper nanoclusters toward copper sulfide nanodiscs: A thermally activated evolution route. Chem. Mater. 2010, 22, 261–271.

35

Sadtler, B.; Demchenko, D. O.; Zheng, H. M.; Hughes, S. M.; Merkle, M. G.; Dahmen, U.; Wang, L. -W.; Alivisatos, A. P. Selective facet reactivity during cation exchange in cadmium sulfide nanorods. J. Am. Chem. Soc. 2009, 131, 5285–5293.

36

Miszta, K.; Gariano, G.; Brescia, R.; Marras, S.; De Donato, F.; Ghosh, S.; De Trizio, L.; Manna, L. Selective cation exchange in the core region of Cu2–xSe/Cu2–xS core/shell nanocrystals. J. Am. Chem. Soc. 2015, 137, 12195–12198.

37

Lesnyak, V.; Brescia, R.; Messina, G. C.; Manna, L. Cu vacancies boost cation exchange reactions in copper selenide nanocrystals. J. Am. Chem. Soc. 2015, 137, 9315–9323.

38

Liu, Y.; Sun, C. J.; Bolin, T.; Wu, T. P.; Liu, Y. Z.; Sternberg, M.; Sun, S. H.; Lin, X. -M. Kinetic pathway of palladium nanoparticle sulfidation process at high temperatures. Nano Lett. 2013, 13, 4893–4901.

39

Crespo-Quesada, M.; Cárdenas-Lizana, F.; Dessimoz, A. -L.; Kiwi-Minsker, L. Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal. 2012, 2, 1773–1786.

40

Niu, W. X.; Gao, Y. J.; Zhang, W. Q.; Yan, N.; Lu, X. M. Pd–Pb alloy nanocrystals with tailored composition for semihydrogenation: Taking advantage of catalyst poisoning. Angew. Chem., Int. Ed. 2015, 54, 8271–8274.

41

Shao, Z. F.; Li, C.; Chen, X.; Pang, M.; Wang, X. K.; Liang, C. H. A facile and controlled route to prepare an eggshell Pd catalyst for selective hydrogenation of phenylacetylene. ChemCatChem 2010, 2, 1555–1558.

42

Mori, A.; Mizusaki, T.; Miyakawa, Y.; Ohashi, E.; Haga, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chemoselective hydrogenation method catalyzed by Pd/C using diphenylsulfide as a reasonable catalyst poison. Tetrahedron 2006, 62, 11925–11932.

43

López, N.; Vargas-Fuentes, C. Promoters in the hydrogenation of alkynes in mixtures: Insights from density functional theory. Chem. Commun. 2012, 48, 1379–1391.

44

Zhang, L.; Su, H. Y.; Sun, M.; Wang, Y. C.; Wu, W. L.; Yu, T.; Zeng, J. Concave Cu–Pd bimetallic nanocrystals: Ligand-based Co-reduction and mechanistic study. Nano Res. 2015, 8, 2415–2430.

File
nr-9-4-1209_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 December 2015
Revised: 06 January 2016
Accepted: 11 January 2016
Published: 16 March 2016
Issue date: April 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The presented research was financially supported by the National Natural Science Foundation of China (Nos. 21325101, 21231005, and 21171105).

Return