Journal Home > Volume 9 , Issue 4

We demonstrate the synthesis of a novel self-anchored catalyst structure containing a Fe-Ni alloy nanosheet generated by phase separation for the substrate-free synthesis of carbon nanostructures. Fast Fourier transform analysis was carried out in order to investigate both the phase and structural evolution of the alloy nanosheet during reduction and chemical vapor deposition (CVD) growth. γ-Fe-Ni (Fe0.64Ni0.36) and α-Fe-Ni (kamacite) phases were formed and separated on the NiFe2O4 nanosheet catalyst precursor during H2 reduction, forming self-anchored mono-dispersed γ-Fe-Ni nanocrystals on a α-Fe-Ni matrix. The Fe-Ni alloy nanosheet serves both as a catalyst for growing metal-encapsulated carbon nano-onions (CNOs), and as a support for anchoring these preformed nanoparticles, yielding mono-dispersed catalyst nanoparticles with no requirement of additional substrates for the CVD growth. This synthesis is capable of mitigating the coalescence and Ostwald ripening without the assistance of an additional substrate. This structure allows for the growth of uniform-sized CNOs despite the aggregation, crumbling, and stacking of the alloy sheet. This study provides a promising design for novel catalyst structures by phase separation towards the substrate-free synthesis of carbon nanostructures in large scale. Finally, the ferromagnetic Fe0.64Ni0.36@CNOs particles demonstrate their application in both magnetic storage and water purification, as a non-toxic water treatment material.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-anchored catalysts for substrate-free synthesis of metal-encapsulated carbon nano-onions and study of their magnetic properties

Show Author's information Chenguang Zhang1Jiajun Li1Chunsheng Shi1Chunnian He1,2Enzuo Liu1Naiqin Zhao1,2( )
School of Materials Science and EngineeringTianjin UniversityTianjin300072China
Collaborative Innovation Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China

Abstract

We demonstrate the synthesis of a novel self-anchored catalyst structure containing a Fe-Ni alloy nanosheet generated by phase separation for the substrate-free synthesis of carbon nanostructures. Fast Fourier transform analysis was carried out in order to investigate both the phase and structural evolution of the alloy nanosheet during reduction and chemical vapor deposition (CVD) growth. γ-Fe-Ni (Fe0.64Ni0.36) and α-Fe-Ni (kamacite) phases were formed and separated on the NiFe2O4 nanosheet catalyst precursor during H2 reduction, forming self-anchored mono-dispersed γ-Fe-Ni nanocrystals on a α-Fe-Ni matrix. The Fe-Ni alloy nanosheet serves both as a catalyst for growing metal-encapsulated carbon nano-onions (CNOs), and as a support for anchoring these preformed nanoparticles, yielding mono-dispersed catalyst nanoparticles with no requirement of additional substrates for the CVD growth. This synthesis is capable of mitigating the coalescence and Ostwald ripening without the assistance of an additional substrate. This structure allows for the growth of uniform-sized CNOs despite the aggregation, crumbling, and stacking of the alloy sheet. This study provides a promising design for novel catalyst structures by phase separation towards the substrate-free synthesis of carbon nanostructures in large scale. Finally, the ferromagnetic Fe0.64Ni0.36@CNOs particles demonstrate their application in both magnetic storage and water purification, as a non-toxic water treatment material.

Keywords: chemical vapor deposition, carbon nano-onion, self-anchored catalyst, phase separation, γ-Fe-Ni, α-Fe-Ni

References(40)

1

Liu, Q. F.; Ren, W. C.; Chen, Z. G.; Wang, D. W.; Liu, B. L.; Yu, B.; Li, F.; Cong, H. T.; Cheng, H. M. Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method. ACS Nano 2008, 2, 1722–1728.

2

Shimizu, T.; Haruyama, J.; Marcano, D. C.; Kosinkin, D. V.; Tour, J. M.; Hirose, K.; Suenaga, K. Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons. Nat. Nanotechnol. 2011, 6, 45–50.

3

Mukhopadhyay, A.; Guo, F.; Tokranov, A.; Xiao, X. C.; Hurt, R. H.; Sheldon, B. W. Engineering of graphene layer orientation to attain high rate capability and anisotropic properties in Li-ion battery electrodes. Adv. Funct. Mater. 2013, 23, 2397–2404.

4

McDonough, J. K.; Frolov, A. I.; Presser, V.; Niu, J.; Miller, C. H.; Ubieto, T.; Fedorov, M. V.; Gogotsi, Y. Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon 2012, 50, 3298–3309.

5

Feng, G.; Jiang, D. E.; Cummings, P. T. Curvature effect on the capacitance of electric double layers at ionic liquid/ onion-like carbon interfaces. J. Chem. Theory. Comput. 2012, 8, 1058–1063.

6

Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation. Nature 1992, 359, 707–709.

7

Han, F. D.; Yao, B.; Bai, Y. J. Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries. J. Phys. Chem. C 2011, 115, 8923–8927.

8

Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181–1121.

9

McDonough, J. K.; Gogotsi, Y. Carbon onions: Synthesis and electrochemical applications. Electrochem. Soc. Interface 2013, 22, 61–66.

10

Zhang, M.; Song, H. H.; Chen, X. H.; Lian, W. T. Large-scale synthesis of onion-like carbon nanoparticles by carbonization of phenolic resin. Acta Mater. 2007, 55, 6144–6150.

11

Sano, N.; Wang, H.; Alexandrou, I.; Chhowalla, M.; Teo, K. B. K.; Amaratunga, G. A. J.; Iimura, K. Properties of carbon onions produced by an arc discharge in water. J. Appl. Phys. 2002, 92, 2783–2788.

12

Xiao, J.; Ouyang, G.; Liu, P.; Wang, C. X.; Yang, G. W. Reversible nanodiamond-carbon onion phase transformations. Nano Lett. 2014, 14, 3645–3652.

13

Lee, S. S.; Zhang, C. G.; Lewicka, Z. A.; Cho, M.; Mayo, J. T.; Yu, W. W.; Hauge, R. H.; Colvin, V. L. Control over the diameter, length, and structure of carbon nanotube carpets using aluminum ferrite and iron oxide nanocrystals as catalyst precursors. J. Phys. Chem. C 2012, 116, 10287–10295.

14

Yuan, D. N.; Ding, L.; Chu, H. B.; Feng, Y. Y.; McNicholas, T. P.; Liu, J. Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett. 2008, 8, 2576–2579.

15

Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Chen, P. C.; Badmaev, A.; Gomez De Arco, L.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.

16

Amama, P. B.; Pint, C. L.; Kim, S. M.; McJilton, L.; Eyink, K. G.; Stach, E. A.; Hauge, R. H.; Maruyama, B. Influence of alumina type on the evolution and activity of alumina-supported Fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano 2010, 4, 895–904.

17

Pint, C. L.; Alvarez, N. T.; Hauge, R. H. Odako growth of dense arrays of single-walled carbon nanotubes attached to carbon surfaces. Nano Res. 2009, 2, 526–534.

18

Zhang, C. G.; Li, J. J.; Shi, C. S.; He, C. N.; Liu, E. Z.; Zhao, N. Q. Effect of Ni, Fe and Fe-Ni alloy catalysts on the synthesis of metal contained carbon nano-onions and studies of their electrochemical hydrogen storage properties. J. Energy. Chem. 2014, 23, 324–330.

19

Kang, J. L.; Li, J. J.; Du, X. W.; Shi, C. S.; Zhao, N. Q.; Nash, P. Synthesis of carbon nanotubes and carbon onions by CVD using a Ni/Y catalyst supported on copper. Mater. Sci. Eng. A. 2008, 475, 136–140.

20

Zhu, Y.; Li, L.; Zhang, C. G.; Casillas, G.; Sun, Z. Z.; Yan, Z.; Ruan, G. D.; Peng, Z. W.; Raji, A. R. O.; Kittrell, C. et al. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 2012, 3, 1225.

21

Qin, J.; He, C. N.; Zhao, N. Q.; Wang, Z. Y.; Shi, C. S.; Liu, E. Z.; Li, J. J. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 2014, 8, 1728–1738.

22

Zhou, J. W.; Qin, J.; Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015, 9, 3837–3848.

23

Zhang, M. Q.; Zhang, Q.; Huang, J. Q.; Nie, J. Q.; Wei, F. Layered double hydroxides as catalysts for the efficient growth of high quality single-walled carbon nanotubes in a fluidized bed reactor. Carbon 2010, 48, 3260–3270.

24

Zhao, Y.; Jiao, Q. Z.; Li, C. H.; Liang, J. Catalytic synthesis of carbon nanostructures using layered double hydroxides as catalyst precursors. Carbon 2007, 45, 2159–216.

25

Hima, H. I.; Xiang, X.; Zhang, L.; Li, F. Novel carbon nanostructures of caterpillar-like fibers and interwoven spheres with excellent surface super-hydrophobicity produced by chemical vapor deposition. J. Mater. Chem. 2008, 18, 1245–1252.

26

Dervishi, E.; Li, Z.; Biris, A. R.; Lupu, D.; Trigwell, S.; Biris, A. S. Morphology of multi-walled carbon nanotubes affected by the thermal stability of the catalyst system. Chem. Mater. 2007, 19, 179–184.

27

Zhang, C. G.; Li, J. J.; Liu, E. Z.; He, C. N.; Shi, C. S.; Du, X. W.; Hauge, R. H.; Zhao, N. Q. Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon 2012, 50, 3513–3521.

28

Goldstein, J. J. The formation of the kamacite phase in metallic meteorites. J. Geophys Res. 1965, 70, 6223–6232.

29

Chuang, Y. Y.; Hsieh, K. C.; Chang, Y. A. A thermodynamic analysis of the phase equilibria of the Fe-Ni system above 1200 K. Metall. Trans. A 1986, 17, 1373–1380.

30

Makino, A.; Sharma, P.; Sato, K.; Takeuchi, A.; Zhang, Y.; Takenaka, K. Artificially produced rare-earth free cosmic magnet. Sci. Rep. 2015, 5, 16627.

31

Zeng, Q.; Baker, I.; Zhang, Y. Magnetic ordering of sputtered nanostructured Fe50Ni50 films. IEEE. Trans. Magn. 2005, 41, 3358–3360.

32

Zhang, C. G.; Li, J. J.; Shi, C. S.; Liu, E. Z.; Du, X. W.; Feng, W.; Zhao, N. Q. The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni-Fe alloy catalyst. Carbon 2011, 49, 1151– 1158.

33

Ang, K. H.; Alexandrou, I.; Mathur, N. D.; Amaratunga, G. A. J.; Haq, S. The effect of carbon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in de-ionized water. Nanotechnology 2004, 15, 520–524.

34

Wu, H. Q.; Cao, Y. J.; Yuan, P. S.; Xu, H. Y.; Wei, X. W. Controlled synthesis, structure and magnetic properties of Fe1-xNix alloy nanoparticles attached on carbon nanotubes. Chem. Phys. Lett. 2005, 406, 148–153.

35

Moustafa, S. F.; Daoush, W. M. Synthesis of nano-sized Fe-Ni powder by chemical process for magnetic applications. J. Mater. Process. Technol. 2007, 181, 59–63.

36

He, C. N.; Zhao, N. Q.; Shi, C. S.; Li, J. J.; Li, H. P. Magnetic properties and transmission electron microscopy studies of Ni nanoparticles encapsulated in carbon nanocages and carbon nanotubes. Mater. Res. Bull. 2008, 43, 2260–2265.

37

Liu, Y. S.; Zhang, J. C.; Yu, L. M.; Jia, G. Q.; Jing, C.; Cao, S. X. Magnetic and frequency properties for nanocrystalline Fe-Ni alloys prepared by high-energy milling method. J. Mag. Mag. Mater. 2005, 285, 138–144.

38

El-Gendy, A. A.; Ibrahim, E. M. M.; Khavrus, V. O.; Krupskaya, Y.; Hampel, S.; Leonhardt, A.; Büchner, B.; Klingeler, R. The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 2009, 47, 2821–2828.

39

Lee, G. H.; Huh, S. H.; Jeong, J. W.; Ri, H. C. Excellent magnetic properties of fullerene encapsulated ferromagnetic nanoclusters. J. Mag. Mag. Mater. 2002, 246, 404–411.

40

Hou, D. L.; Jiang, E. Y.; Tang, G. D.; Li, Z. Q.; Ren, S. W.; Bai, H. L. Zero-field cooled and field-cooled magnetization of itinerant magnetic system Sr1-xCaxRuO3. Phys. Lett. A. 2002, 298, 207–210.

File
nr-9-4-1159_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 November 2015
Revised: 30 December 2015
Accepted: 05 January 2016
Published: 10 March 2016
Issue date: April 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors acknowledge the finance support by the National Natural Science Foundation of China (Nos. 51531004 and 51272173) and Foundation for Sino-Euro Cooperative Project from Chinese Ministry of Science and Technology (No. SQ2013ZOA100006). The authors also acknowledge helpful discussion with Dr. Jiancan Yu in Nanyang Technological University in Singapore.

Return