Journal Home > Volume 9 , Issue 4

In recent years, surface-enhanced Raman spectroscopy (SERS) has developed rapidly and is used for the detection of molecules and biomolecules in liquids. However, few studies have focused on SERS using a water surface as the substrate. A floating metal film on water is desirable for an enhanced SERS performance. In this work, silver nanoparticles (Ag NPs) encased in poly(vinylpyrrolidone) films (Ag-PVP films) were synthesized on the surface of an aqueous solution by room temperature electron reduction. A floating silver film on a water surface was thereby achieved and is reported for the first time. The synthesized Ag-PVP film is an excellent flexible substrate for SERS and has other potential applications. Using the floating silver film as a flexible SERS substrate, 10–11 M of 4-aminothiophenol, 10–6 M of riboflavin, 10–9 M of 4-mercaptobenzoic acid, 10–7 M of 4-mercaptophenol, and 10–7 M of 4-aminobenzoic acid are identified, demonstrating potential use for the floating substrate in the liquid-phase detection of molecules.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Floating silver film: A flexible surface-enhanced Raman spectroscopy substrate for direct liquid phase detection at gas–liquid interfaces

Show Author's information Zongyuan WangMinyue LiWei WangMin FangQidi SunChangjun Liu( )
Collaborative Innovation Center of Chemical Science and EngineeringSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China

Abstract

In recent years, surface-enhanced Raman spectroscopy (SERS) has developed rapidly and is used for the detection of molecules and biomolecules in liquids. However, few studies have focused on SERS using a water surface as the substrate. A floating metal film on water is desirable for an enhanced SERS performance. In this work, silver nanoparticles (Ag NPs) encased in poly(vinylpyrrolidone) films (Ag-PVP films) were synthesized on the surface of an aqueous solution by room temperature electron reduction. A floating silver film on a water surface was thereby achieved and is reported for the first time. The synthesized Ag-PVP film is an excellent flexible substrate for SERS and has other potential applications. Using the floating silver film as a flexible SERS substrate, 10–11 M of 4-aminothiophenol, 10–6 M of riboflavin, 10–9 M of 4-mercaptobenzoic acid, 10–7 M of 4-mercaptophenol, and 10–7 M of 4-aminobenzoic acid are identified, demonstrating potential use for the floating substrate in the liquid-phase detection of molecules.

Keywords: silver film, liquid phase detection, surface-enhanced Raman, gas/liquid, poly(vinylpyrrolidone), electron reduction

References(46)

1

Formo, E. V.; Mahurin, S. M.; Dai, S. Robust SERS substrates generated by coupling a bottom-up approach and atomic layer deposition. ACS Appl. Mater. Interface 2010, 2, 1987–1991.

2

Qian, L. H.; Mookherjee, R. Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering. Nano Res. 2011, 4, 1117–1128.

3

Zhu, C. H.; Meng, G. W.; Huang, Q.; Wang, X. J.; Qian, Y. W.; Hu, X. Y.; Tang, H. B.; Wu, N. Q. ZnO-nanotaper array sacrificial templated synthesis of noble-metal building-block assembled nanotube arrays as 3D SERS-substrates. Nano Res. 2015, 8, 957–966.

4

Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

5

Hong, X.; Tan, C. L.; Chen, J. Z.; Xu, Z. C.; Zhang, H. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Res. 2015, 8, 40–55.

6

Ling, X. Y.; Yan, R. X.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. D. Alumina-coated Ag nanocrystal monolayers as surface enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132–143.

7

Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhou, F.; Hu, X. Y.; Qian, Y. W.; Tang, H. B.; Han, F. M.; Chu, Z. Q. Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection. Nano Res. 2014, 7, 1177–1187.

8

Lee, J. P.; Chen, D. C.; Li, X. X.; Yoo, S. M.; Bottomley, L. A.; El-Sayed, M. F. A.; Park, S.; Liu, M. L. Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering. Nanoscale 2013, 5, 11620–11624.

9

Zhu, H. G.; Bao, L. L.; Mahurin, S. M.; Baker, G. A.; Hagaman, E. W.; Dai, S. Seeded growth of robust SERS-active 2D Au@Ag nanoparticulate films. J. Mater. Chem. 2008, 18, 1079–1081.

10

Liu, Y. H.; Gokcen, D.; Bertocci, U.; Moffat, T. P. Self-terminating growth of platinum films by electrochemical deposition. Science 2012, 338, 1327–1330.

11

Lee, J.; Bhak, G.; Lee, J. H.; Park, W.; Lee, M.; Lee, D.; Jeon, N. L.; Jeong, D. H.; Char, K.; Paik, S. R. Free-standing gold-nanoparticle monolayer film fabricated by protein self-assembly of α-synuclein. Angew. Chem., Int. Ed. 2015, 54, 4571–4576.

12

Duan, H. H.; Wang, D. S.; Li, Y. D. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792.

13

Chiang, W. H.; Cochey, M.; Virnelson, R. C.; Sankarana, R. M. Nonlithographic fabrication of surface-enhanced Raman scattering substrates using a rastered atmospheric-pressure microplasma source. Appl. Phys. Lett. 2007, 91, 021501.

14

Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 2008, 8, 1923–1928.

15

Wang, X.; Li, M. H.; Meng, L. Y.; Lin, K. Q.; Feng, J. M.; Huang, T. X.; Yang, Z. L.; Ren, B. Probing the location of hot spots by surface-enhanced Raman spectroscopy: Toward uniform substrates. ACS Nano 2014, 8, 528–536.

16

Xu, L. J.; Zong, C.; Zheng, X. S.; Hu, P.; Feng, J. M.; Ren, B. Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal. Chem. 2014, 86, 2238–2245.

17

Tong, L. M.; Zhu, T.; Liu, Z. F. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: From self-assembled arrays to individual gold nanoparticles. Chem. Soc. Rev. 2011, 40, 1296–1304.

18

Evanoff, D. D., Jr.; Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 2005, 6, 1221–1231.

19

Zhao, L. L.; Jensen, L.; Schatz, G. C. Pyridine-Ag20 cluster: A model system for studying surface-enhanced Raman scattering. J. Am. Chem. Soc. 2006, 128, 2911–2919.

20

Kim, K.; Han, H. S.; Choi, I.; Lee, C.; Hong, S. G.; Suh, S. H.; Lee, L. P.; Kang, T. Interfacial liquid-state surface-enhanced Raman spectroscopy. Nat. Commun. 2013, 4, 2182.

21

Wang, S. P.; Shan, X. N.; Patel, U.; Huang, X. P.; Lu, J.; Li, J. H.; Tao, N. J. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc. Natl Acad. Sci. USA 2010, 107, 16028–16032.

22

Liu, C. -J.; Zhao, Y.; Li, Y. Z.; Zhang, D. -S.; Chang, Z.; Bu, X. -H. Perspectives on electron-assisted reduction for preparation of highly dispersed noble metal catalysts. ACS Sustainable Chem. Eng. 2014, 2, 3–13.

23

Wang, Z. -J.; Xie, Y. B.; Liu, C. -J. Synthesis and characterization of noble metal (Pd, Pt, Au, Ag) nanostructured materials confined in the channels of mesoporous SBA-15. J. Phys. Chem. C 2008, 112, 19818–19824.

24

Pan, Y. -X.; Cong, H. -P.; Men, Y. -L.; Xin, S.; Sun, Z. -Q.; Liu, C. -J.; Yu, S. -H. Peptide self-assembled biofilm with unique electron transfer flexibility for highly efficient visible-light-driven photocatalysis. ACS Nano 2015, 9, 11258–11265.

25

Zhang, W. J.; Liu, Y.; Cao, R. G.; Li, Z. H.; Zhang, Y. H.; Tang, Y.; Fan, K. N. Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals. J. Am. Chem. Soc. 2008, 130, 15581–15588.

26

Kim, J. H.; Kim, C. K.; Won, J.; Kang, Y. S. Role of anions for the reduction behavior of silver ions in polymer/silver salt complex membranes. J. Membr. Sci. 2005, 250, 207–214.

27

Yick, S.; Han, Z. J.; Ostrikov, K. K. Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing. Chem. Commun. 2013, 49, 2861–2863.

28

Kim, K.; Lee, H. S. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper. J. Phys. Chem. B 2005, 109, 18929–18934.

29

Shin, K. S. Effect of surface morphology on surface-enhanced Raman scattering of 4-aminobenzenethiol adsorbed on gold substrates. J. Raman Spectrosc. 2008, 39, 468–473.

30

Yoon, J. K.; Kim, K.; Shin, K. S. Raman scattering of 4-aminobenzenethiol sandwiched between Au nanoparticles and a macroscopically smooth Au substrate: Effect of size of Au nanoparticles. J. Phys. Chem. C 2009, 113, 1769–1774.

31

Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-teller contribution. J. Phys. Chem. 1994, 98, 12702–12707.

32

Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.

33

Song, Y. H.; Miao, T. T.; Zhang, P. N.; Bi, C. X.; Xia, H. B.; Wang, D. Y.; Tao, X. T. {331}-Faceted trisoctahedral gold nanocrystals: Synthesis, superior electrocatalytic performance and highly efficient SERS activity. Nanoscale 2015, 7, 8405–8415.

34

Gabudean, A. M.; Focsan, M.; Astilean, S. Gold nanorods performing as dual-modal nanoprobes via metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS). J. Phys. Chem. C 2012, 116, 12240–12249.

35

Hong, G. S.; Li, C.; Qi, L. M. Facile fabrication of two-dimensionally ordered macroporous silver thin films and their application in molecular sensing. Adv. Funct. Mater. 2010, 20, 3774–3783.

36

Nie, B.; He, C. L.; Liu, L. J. Surface-enhanced Raman scattering within silver-nanoparticle-decorated nanometric apertures. J. Raman Spectrosc. 2013, 44, 1512–1517.

37

Liu, F. F.; Gu, H. M.; Lin, Y.; Qi, Y. J.; Dong, X.; Gao, J. X.; Cai, T. T. Surface-enhanced Raman scattering study of riboflavin on borohydride-reduced silver colloids: Dependence of concentration, halide anions and pH values. Spectrochim. Acta A 2012, 85, 111–119.

38

Michota, A.; Bukowska, J. Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J. Raman Spectrosc. 2003, 34, 21–25.

39

Kudelski, A. Surface-enhanced Raman scattering study of monolayers formed from mixtures of 4-mercaptobenzoic acid and various aromatic mercapto-derivative bases. J. Raman Spectrosc. 2009, 40, 2037–2043.

40

Song, C. Y.; Abell, J. L.; He, Y. P.; Murph, S. H.; Cui, Y. P.; Zhao, Y. P. Gold-modified silver nanorod arrays: Growth dynamics and improved SERS properties. J. Mater. Chem. 2012, 22, 1150–1159.

41

Lu, P.; Dong, J.; Toshima, N. Surface-enhanced Raman scattering of A Cu/Pd alloy colloid protected by poly(N-vinyl-2-pyrrolidone). Langmuir 1999, 15, 7980–7992.

42

Li, Y. S.; Wang, Y.; Cheng, J. C. Interaction effects on surface-enhanced Raman scattering activities in silver sols. Vib. Spectrosc. 2001, 27, 65–74.

43

Zhang, S. Z.; Ni, W. H.; Kou, X. S.; Yeung, M. H.; Sun, L. D.; Wang, J. F.; Yan, C. H. Formation of gold and silver nanoparticle arrays and thin shells on mesostructured silica nanofibers. Adv. Funct. Mater. 2007, 17, 3258–3266.

44

Yang, X.; Wang, X. J.; Ching, C. B. In situ monitoring of solid-state transition of p-aminobenzoic acid polymorphs using Raman spectroscopy. J. Raman Spectrosc. 2009, 40, 870–875.

45

Ma, L.; Wang, D. S.; Li, J. H.; Bai, B. Y.; Fu, L. X.; Li, Y. D. Ag/CeO2 nanospheres: Efficient catalysts for formaldehyde oxidation. Appl. Catal. B: Environ. 2014, 148-149, 36–43.

46

Hou, W. B.; Cronin, S. B. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619.

File
nr-9-4-1148_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2015
Revised: 04 January 2016
Accepted: 05 January 2016
Published: 10 March 2016
Issue date: April 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 91334206). The authors thank Dr. Jeanne Wynn for her help in the use of English and Dr. Tao Xue for Raman measurement. The authors declare no competing financial interests.

Return