Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Considering the development of magnetic resonance imaging (MRI) under ultrahigh magnetic field (> 3 T), the exploration of novel contrast agents (CAs) for ultrahigh field MRI is urgently needed. Herein, we report polyethyleneimine (PEI)-coated TbF3 nanoparticles (NPs), which were synthesized by a facile solvothermal method, as potential dual-mode CAs for ultrahigh field MRI and X-ray computed tomography (CT). Owing to their strong paramagnetism, the TbF3 NPs showed excellent transverse relaxivity (395.77 mM–1·s–1) and negligible longitudinal relaxivity under an ultrahigh magnetic field (7 T) with a great potential as a T2-weighted MRI contrast agent. Furthermore, by comparison with the clinically used CT CAs (iohexol), the TbF3 NPs showed superior X-ray attenuation ability. The practical application for T2-weighted MRI and CT imaging was demonstrated with an animal model. Moreover, cell cytotoxicity and in vivo toxicity assessments implied the low toxicity of TbF3 NPs. In summary, the above results indicate that TbF3 NPs are promising candidates for ultrahigh field MRI and CT dual-mode imaging.
Weissleder, R.; Pittet, M. J. Imaging in the era of molecular oncology. Nature 2008, 452, 580–589.
Huang, W. -Y.; Davis, J. J. Multimodality and nanoparticles in medical imaging. Dalton Trans. 2011, 40, 6087–6103.
Meade, T. J.; Aime, S. Chemistry of molecular imaging. Acc. Chem. Res. 2009, 42, 821–821.
Hussain, T.; Nguyen, Q. T. Molecular imaging for cancer diagnosis and surgery. Adv. Drug Deliv. Rev. 2014, 66, 90–100.
Bottrill, M.; Nicholas, L. K.; Long, N. J. Lanthanides in magnetic resonance imaging. Chem. Soc. Rev. 2006, 35, 557–571.
Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 2006, 35, 512–523.
Yu, J.; Hao, R.; Sheng, F. G.; Xu, L. L.; Li, G. J.; Hou, Y. L. Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Res. 2012, 5, 679–694.
Cui, R. L.; Li, J.; Huang, H.; Zhang, M. Y.; Guo, X. H.; Chang, Y.; Li, M.; Dong, J. Q.; Sun, B. Y.; Xing, G. M. Novel carbon nanohybrids as highly efficient magnetic resonance imaging contrast agents. Nano Res. 2015, 8, 1259–1268.
Geraldes, C. F. G. C.; Laurent, S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol. Imaging 2009, 4, 1–23.
Jun, Y. -W.; Lee, J. -H.; Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem., Int. Ed. 2008, 47, 5122–5135.
Hu, F. Q.; Zhao, Y. S. Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. Nanoscale 2012, 4, 6235–6243.
Blow, N. Functional neuroscience: How to get ahead in imaging. Nature 2009, 458, 925–928.
Terreno, E.; Castelli, D. D.; Viale, A.; Aime, S. Challenges for molecular magnetic resonance imaging. Chem. Rev. 2010, 110, 3019–3042.
Helm, L. Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications. Future Med. Chem. 2010, 2, 385–396.
Fries, P.; Morelli, J. N.; Lux, F.; Tillement, O.; Schneider, G.; Buecker, A. The issues and tentative solutions for contrast-enhanced magnetic resonance imaging at ultra-high field strength. WIREs Nanomed. Nanobiotechnol. 2014, 6, 559–573.
Corot, C.; Robert, P.; Idée, J. -M.; Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 2006, 58, 1471–1504.
Jung, C. W.; Jacobs, P. Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: Ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging 1995, 13, 661–674.
Rohrer, M.; Bauer, H.; Mintorovitch, J.; Requardt, M.; Weinmann, H. J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 2005, 40, 715–724.
Norek, M.; Peters, J. A. MRI contrast agents based on dysprosium or holmium. Prog. Nucl. Mag. Res. Sp. 2011, 59, 64–82.
Kattel, K.; Park, J. Y.; Xu, W. L.; Kim, H. G.; Lee, E. J.; Bony, B. A.; Heo, W. C.; Jin, S.; Baeck, J. S.; Chang, Y. et al. Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2 MRI contrast agents. Biomaterials 2012, 33, 3254–3261.
Kattel, K.; Park, J. Y.; Xu, W. L.; Kim, H. G.; Lee, E. J.; Bony, B. A.; Heo, W. C.; Lee, J. J.; Jin, S.; Baeck, J. S. et al. A facile synthesis, in vitro and in vivo MR studies of D-glucuronic acid-coated ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. ACS Appl. Mater. Interfaces 2011, 3, 3325–3334.
Xu, W. L.; Kattel, K.; Park, J. Y.; Chang, Y. M.; Kim, T. J.; Lee, G. H. Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Phys. Chem. Chem. Phys. 2012, 14, 12687–12700.
Na, H. B.; Song, I. C.; Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009, 21, 2133–2148.
Elst, L. V.; Roch, A.; Gillis, P.; Laurent, S.; Botteman, F.; Bulte, J. W. M.; Muller, R. N. Dy-DTPA derivatives as relaxation agents for very high field MRI: The beneficial effect of slow water exchange on the transverse relaxivities. Magn. Reson. Med. 2002, 47, 1121–1130.
Norek, M.; Pereira, G. A.; Geraldes, C. F. G. C.; Denkova, A.; Zhou, W. Z.; Peters, J. A. NMR transversal relaxivity of suspensions of lanthanide oxide nanoparticles. J. Phys. Chem. C 2007, 111, 10240–10246.
Das, G. K.; Zhang, Y.; D'Silva, L.; Padmanabhan, P.; Heng, B. C.; Loo, J. S. C.; Selvan, S. T.; Bhakoo, K. K.; Tan, T. T. Y. Single-phase Dy2O3: Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging. Chem. Mater. 2011, 23, 2439–2446.
Das, G. K.; Johnson, N. J. J.; Cramen, J.; Blasiak, B.; Latta, P.; Tomanek, B.; van Veggel, F. C. J. M. NaDyF4 nanoparticles as T2 contrast agents for ultrahigh field magnetic resonance imaging. J. Phys. Chem. Lett. 2012, 3, 524–529.
Zhang, Y.; Vijayaragavan, V.; Das, G. K.; Bhakoo, K. K.; Tan, T. T. Y. Single-phase NaDyF4: Tb3+ nanocrystals as multifunctional contrast agents in high-field magnetic resonance and optical imaging. Eur. J. Inorg. Chem. 2012, 2012, 2044–2048.
Ni, D. L.; Zhang, J. W.; Bu, W. B.; Zhang, C.; Yao, Z. W.; Xing, H. Y.; Wang, J.; Duan, F.; Liu, Y. Y.; Fan, W. P. et al. PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials 2016, 76, 218–225.
Guo, W. S.; Yang, W. T.; Wang, Y.; Sun, X. L.; Liu, Z. Y.; Zhang, B. B.; Chang, J.; Chen, X. Y. Color-tunable Gd-Zn-Cu-In-S/ZnS quantum dots for dual modality magnetic resonance and fluorescence imaging. Nano Res. 2014, 7, 1581–1591.
Yang, D. M.; Li, C. X.; Lin, J. Multimodal cancer imaging using lanthanide-based upconversion nanoparticles. Nanomedicine 2015, 10, 2573–2591.
Kagadis, G. C.; Loudos, G.; Katsanos, K.; Langer, S. G.; Nikiforidis, G. C. In vivo small animal imaging: Current status and future prospects. Med. Phys. 2010, 37, 6421–6442.
Dai, Y. L.; Xiao, H. H.; Liu, J. H.; Yuan, Q. H.; Ma, P. A.; Yang, D. M.; Li, C. X.; Cheng, Z. Y.; Hou, Z. Y.; Yang, P. P. et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconversion nanoparticles. J. Am. Chem. Soc. 2013, 135, 18920–18929.
Lv, R. C.; Yang, P. P.; He, F.; Gai, S. L.; Li, C. X.; Dai, Y. L.; Yang, G. X.; Lin, J. A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano 2015, 9, 1630– 1647.
Kuo, T.; Lai, W. Y.; Li, C. H.; Wun, Y. H.; Chang, H. C.; Chen, J.; Yang, P.; Chen, C. C. AS1411 aptamer-conjugated Gd2O3: Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging. Nano Res. 2014, 7, 658–669.
Zhu, J.; Wang, J. Q.; Wang, X.; Zhu, J. F.; Yang, Y. M.; Tian, J.; Cui, W. G.; Ge, C. C.; Li, Y. G.; Pan, Y. et al. Facile synthesis of magnetic core–shell nanocomposites for MRI and CT bimodal imaging. J. Mater. Chem. B 2015, 3, 6905–6910.
Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343–2389.
Branca, M.; Pelletier, F.; Cottin, B.; Ciuculescu, D.; Lin, C. C.; Serra, R.; Mattei, J. G.; Casanove, M. J.; Tan, R.; Respaud, M. et al. Design of FeBi nanoparticles for imaging applications. Faraday Discuss. 2014, 175, 97–111.
Liang, S. Y.; Zhou, Q.; Wang, M.; Zhu, Y. H.; Wu, Q. Z.; Yang, X. L. Water-soluble L-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int. J. Nanomedicine 2015, 10, 2325–2333.
Park, J. -A.; Kim, H. -K.; Kim, J. -H.; Jeong, S. -W.; Jung, J. -C.; Lee, G. -H.; Lee, J.; Chang, Y. M.; Kim, T. -J. Gold nanoparticles functionalized by gadolinium–DTPA conjugate of cysteine as a multimodal bioimaging agent. Bioorg. Med. Chem. Lett. 2010, 20, 2287–2291.
Wen, S. H.; Li, K. G.; Cai, H. D.; Chen, Q.; Shen, M. W.; Huang, Y. P.; Peng, C.; Hou, W. X.; Zhu, M. F.; Zhang, G. X. et al. Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 2013, 34, 1570–1580.
Sun, H. M.; Yuan, Q. H.; Zhang, B. H.; Ai, K. L.; Zhang, P. G.; Lu, L. H. GdⅢ functionalized gold nanorods for multimodal imaging applications. Nanoscale 2011, 3, 1990–1996.
Alric, C.; Taleb, J.; Le Duc, G.; Mandon, C.; Billotey, C.; Le Meur-Herland, A.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 5908–5915.
Lee, N.; Cho, H. R.; Oh, M. H.; Lee, S. H.; Kim, K.; Kim, B. H.; Shin, K.; Ahn, T. Y.; Choi, J. W.; Kim, Y. W. et al. Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J. Am. Chem. Soc. 2012, 134, 10309–10312.
Carril, M.; Fernández, I.; Rodríguez, J.; García, I.; Penadés, S. Gold-coated iron oxide glyconanoparticles for MRI, CT, and US multimodal imaging. Part. Part. Syst. Char. 2014, 31, 81–87.
Cai, H. D.; Li, K. G.; Li, J. C.; Wen, S. H.; Chen, Q.; Shen, M. W.; Zheng, L. F.; Zhang, G. X.; Shi, X. Y. Dendrimer-assisted formation of Fe3O4/Au nanocomposite particles for targeted dual mode CT/MR imaging of tumors. Small 2015, 11, 4584–4593.
Feng, W.; Zhou, X. J.; Nie, W.; Chen, L.; Qiu, K. X.; Zhang, Y. Z.; He, C. L. Au/polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: An in vitro study. ACS Appl. Mater. Interfaces 2015, 7, 4354–4367.
Narayanan, S.; Sathy, B. N.; Mony, U.; Koyakutty, M.; Nair, S. V.; Menon, D. Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl. Mater. Interfaces 2012, 4, 251–260.
Jin, X. Y.; Fang, F.; Liu, J. H.; Jiang, C. H.; Han, X. L.; Song, Z. K.; Chen, J. X.; Sun, G. Y.; Lei, H.; Lu, L. H. An ultrasmall and metabolizable PEGylated NaGdF4: Dy nanoprobe for high-performance T1/T2-weighted MR and CT multimodal imaging. Nanoscale 2015, 7, 15680–15688.
Zheng, X. -Y.; Sun, L. -D.; Zheng, T.; Dong, H.; Li, Y.; Wang, Y. -F.; Yan, C. -H. PAA-capped GdF3 nanoplates as dual-mode MRI and CT contrast agents. Sci. Bull. 2015, 60, 1092–1100.
Ahmad, M. W.; Xu, W. L.; Kim, S. J.; Baeck, J. S.; Chang, Y. M.; Bae, J. E.; Chae, K. S.; Park, J. A.; Kim, T. J.; Lee, G. H. Potential dual imaging nanoparticle: Gd2O3 nanoparticle. Sci. Rep. 2015, 5, 8549.
Viswanathan, S.; Kovacs, Z.; Green, K. N.; Ratnakar, S. J.; Sherry, A. D. Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem. Rev. 2010, 110, 2960–3018.
Dong, H.; Du, S. -R.; Zheng, X. -Y.; Lyu, G. -M.; Sun, L. -D.; Li, L. -D.; Zhang, P. -Z.; Zhang, C.; Yan, C. -H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.
Wang, F.; Chatterjee, D. K.; Li, Z. Q.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology 2006, 17, 5786–5791.
Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642– 5643.
Wang, B. W.; Jiang, S. D.; Wang, X. T.; Gao, S. Magnetic molecular materials with paramagnetic lanthanide ions. Sci. China Ser. B 2009, 52, 1739–1758.
Rosenberg, J. T.; Kogot, J. M.; Lovingood, D. D.; Strouse, G. F.; Grant, S. C. Intracellular bimodal nanoparticles based on quantum dots for high-field MRI at 21.1 T. Magn. Reson. Med. 2010, 64, 871–882.
Vuong, Q. L.; Van Doorslaer, S.; Bridot, J. L.; Argante, C.; Alejandro, G.; Hermann, R.; Disch, S.; Mattea, C.; Stapf, S.; Gossuin, Y. Paramagnetic nanoparticles as potential MRI contrast agents: Characterization, NMR relaxation, simulations and theory. Magn. Reson. Mater. Phy. 2012, 25, 467–478.
Gossuin, Y.; Hocq, A.; Vuong, Q. L.; Disch, S.; Hermann, R. P.; Gillis, P. Physico-chemical and NMR relaxometric characterization of gadolinium hydroxide and dysprosium oxide nanoparticles. Nanotechnology 2008, 19, 475102.
Koenig, S. H.; Kellar, K. E. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn. Reson. Med. 1995, 34, 227–233.
Yu, M. X.; Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 2015, 9, 6655–6674.
Sun, Y.; Feng, W.; Yang, P. Y.; Huang, C. H.; Li, F. Y. The biosafety of lanthanide upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1509–1525.