Journal Home > Volume 9 , Issue 1

Lithium–sulfur batteries can deliver significantly higher specific capacity than standard lithium ion batteries, and represent the next generation of energy storage devices for both electric vehicles and mobile devices. However, the lithium–sulfur technology today is plagued with numerous challenges, including poor sulfur conductivity, large volumetric expansion, severe polysulfide shuttling and low sulfur utilization, which prevent its wide-spread adoption in the energy storage industry. Here we report a freestanding three-dimensional (3D) graphene framework for highly efficient loading of sulfur particles and creating a high capacity sulfur cathode. Using a one-pot synthesis method, we show a mechanically robust graphene–sulfur composite can be prepared with the highest sulfur weight content (90% sulfur) reported to date, and can be directly used as the sulfur cathode without additional binders or conductive additives. The graphene–sulfur composite features a highly interconnected graphene network ensuring excellent conductivity and a 3D porous structure allowing efficient ion transport and accommodating large volume expansion. Additionally, the 3D graphene framework can also function as an effective encapsulation layer to retard the polysulfide shuttling effect, thus enabling a highly robust sulfur cathode. Electrochemical studies show that such composite can deliver a highest capacity of 96 mAh·g–1, a record high number achieved for all sulfur cathodes reported to date when normalized by the total mass of the entire electrode. Our studies demonstrate that the 3D graphene framework represents an attractive scaffold material for a high performance lithium sulfur battery cathode, and could enable exciting opportunities for ultra-high capacity energy storage applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery

Show Author's information Benjamin Papandrea1,§Xu Xu1,2,§Yuxi Xu1Chih-Yen Chen3Zhaoyang Lin1Gongming Wang1Yanzhu Luo2Matthew Liu3Yu Huang3,4Liqiang Mai2( )Xiangfeng Duan1,4( )
Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCA90095USA
State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCA90095USA
California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA

§ These authors contributed equally to this work.

Abstract

Lithium–sulfur batteries can deliver significantly higher specific capacity than standard lithium ion batteries, and represent the next generation of energy storage devices for both electric vehicles and mobile devices. However, the lithium–sulfur technology today is plagued with numerous challenges, including poor sulfur conductivity, large volumetric expansion, severe polysulfide shuttling and low sulfur utilization, which prevent its wide-spread adoption in the energy storage industry. Here we report a freestanding three-dimensional (3D) graphene framework for highly efficient loading of sulfur particles and creating a high capacity sulfur cathode. Using a one-pot synthesis method, we show a mechanically robust graphene–sulfur composite can be prepared with the highest sulfur weight content (90% sulfur) reported to date, and can be directly used as the sulfur cathode without additional binders or conductive additives. The graphene–sulfur composite features a highly interconnected graphene network ensuring excellent conductivity and a 3D porous structure allowing efficient ion transport and accommodating large volume expansion. Additionally, the 3D graphene framework can also function as an effective encapsulation layer to retard the polysulfide shuttling effect, thus enabling a highly robust sulfur cathode. Electrochemical studies show that such composite can deliver a highest capacity of 96 mAh·g–1, a record high number achieved for all sulfur cathodes reported to date when normalized by the total mass of the entire electrode. Our studies demonstrate that the 3D graphene framework represents an attractive scaffold material for a high performance lithium sulfur battery cathode, and could enable exciting opportunities for ultra-high capacity energy storage applications.

Keywords: energy storage, graphene framework, three-dimensional (3D)-network, high loading, lithium sulfur battery

References(42)

1

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x ≤1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.

DOI
2

Yamada, A.; Chung, S. -C.; Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 2001, 148, A224–A229.

3

Armand, M.; Tarascon, J. -M. Building better batteries. Nature 2008, 451, 652–657.

4

Tarascon, J. -M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

5

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. -M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

6

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

7

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.

8

He, G.; Ji, X. L.; Nazar, L. High "C" rate Li–S cathodes: Sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 2011, 4, 2878–2883.

9

Lin, T. Q.; Tang, Y. F.; Wang, Y. M.; Bi, H.; Liu, Z. Q.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene–sulfur composites for high-performance lithium– sulfur batteries. Energy Environ. Sci. 2013, 6, 1283–1290.

10

Manthiram, A.; Fu, Y. Z.; Chung, S. -H.; Zu, C. X.; Su, Y. -S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

11

Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162.

12

Ji, X. L.; Nazar, L. F. Advances in Li–S batteries. J. Mater. Chem. 2010, 20, 9821–9826.

13

Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium–sulfur batteries. Nano Res. 2015, 8, 2663–2675.

14

Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li–S batteries with high performance. Nano Res. 2013, 6, 38–46.

15

Qiu, Y. C.; Li, W. F.; Li, G. Z.; Hou, Y.; Zhou, L. S.; Li, H. F.; Liu, M. N.; Ye, F. M.; Yang, X. W.; Zhang, Y. G. Polyaniline-modified cetyltrimethylammonium bromide– graphene oxide–sulfur nanocomposites with enhanced performance for lithium–sulfur batteries. Nano Res. 2014, 7, 1355–1363.

16

Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano 2014, 8, 9295–9303.

17

Lv, D. P.; Zheng, J. M.; Li, Q. Y.; Xie, X.; Ferrara, S.; Nie, Z. M.; Mehdi, L. B.; Browning, N. D.; Zhang, J. G.; Graff, G. L. et al. High energy density lithium–sulfur batteries: Challenges of thick sulfur cathodes. Adv. Energy Mater. 2015, 5, 1402290.

18

Cheng, X. -B.; Huang, J. -Q.; Zhang, Q.; Peng, H. -J.; Zhao, M. -Q.; Wei, F. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy 2014, 4, 65–72.

19

Lu, S. T.; Chen, Y.; Wu, X. H.; Wang, Z. D.; Li, Y. Three- dimensional sulfur/graphene multifunctional hybrid sponges for lithium–sulfur batteries with large areal mass loading. Sci. Rep. 2014, 4, 4629.

20

Evers, S.; Nazar, L. F. Graphene-enveloped sulfur in a one pot reaction: A cathode with good coulombic efficiency and high practical sulfur content. Chem. Commun. 2012, 48, 1233–1235.

21

Zheng, J. M.; Gu, M.; Wagner, M. J.; Hays, K. A.; Li, X. H.; Zuo, P. J.; Wang, C. M.; Zhang, J. -G.; Liu, J.; Xiao, J. Revisit carbon/sulfur composite for Li–S batteries. J. Electrochem. Soc. 2013, 160, A1624–A1628.

22

Xu, G. -L.; Xu, Y. -F.; Fang, J. -C.; Peng, X. -X.; Fu, F.; Huang, L.; Li, J. -T.; Sun, S. -G. Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium–sulfur batteries. ACS Appl. Mat. Interfaces 2013, 5, 10782–10793.

23

Nazar, L. F.; Cuisinier, M.; Pang, Q. Lithium–sulfur batteries. MRS Bull. 2014, 39, 436–442.

24

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

25

Tang, Z. H.; Shen, S. L.; Zhuang, J.; Wang, X. Noble- metal-promoted three-dimensional macroassembly of single- layered graphene oxide. Angew. Chem., Int. Ed. 2010, 49, 4603–4607.

26

Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled three- dimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666–1675.

27

Xu, Y. X.; Chen, C. -Y.; Zhao, Z. P.; Lin, Z. Y.; Lee, C.; Xu, X.; Wang, C.; Huang, Y.; Shakir, M. I.; Duan, X. F. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 2015, 15, 4605–4610.

28

Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

29

Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Wang, Y.; Huang, Y.; Duan, X. F. Functionalized graphene hydrogel-based high- performance supercapacitors. Adv. Mater. 2013, 25, 5779– 5784.

30

Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.

31

Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.

32

Kim, H.; Lim, H. -D.; Kim, J.; Kang, K. Graphene for advanced Li/S and Li/air batteries. J. Mater. Chem. A 2014, 2, 33–47.

33

Zhou, G. M.; Yin, L. -C.; Wang, D. -W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. -M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 2013, 7, 5367–5375.

34

Xi, K.; Kidambi, P. R.; Chen, R. J.; Gao, C. L.; Peng, X. Y.; Ducati, C.; Hofmann, S.; Kumar, R. V. Binder free three- dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale 2014, 6, 5746–5753.

35

Gao, X. F.; Li, J. Y.; Guan, D. S.; Yuan, C. A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency. ACS Appl. Mat. Interfaces 2014, 6, 4154–4159.

36

Sun, L.; Li, M. Y.; Jiang, Y.; Kong, W. B.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries. Nano Lett. 2014, 14, 4044–4049.

37

Chen, H. W.; Wang, C. H.; Dong, W. L.; Lu, W.; Du, Z. L.; Chen, L. W. Monodispersed sulfur nanoparticles for lithium– sulfur batteries with theoretical performance. Nano Lett. 2015, 15, 798–802.

38

Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li–S batteries. Adv. Energy Mater. 2015, 5, 1500408.

39

Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium–sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

40

Li, W. Y.; Liang, Z.; Lu, Z. D.; Yao, H. B.; Seh, Z. W.; Yan, K.; Zheng, G. Y.; Cui, Y. A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 2015, 5, 1500211.

41

Hummers Jr, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

42

Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. Chemically converted graphene induced molecular flattening of 5, 10, 15, 20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(Ⅱ) ions. J. Am. Chem. Soc. 2009, 131, 13490–13497.

Video
nr-9-1-240_ESM_video_S1.mov
File
nr-9-1-240_ESM.pdf (591 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 December 2015
Accepted: 05 January 2016
Published: 29 January 2016
Issue date: January 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We acknowledge the Electron Imaging Center for Nanomachines (EICN) at the California NanoSystems Institute for the technical support of TEM. X. F. D. acknowledges partial support by a Dupont Young Professor Award. X. X. would like to acknowledge the Chinese Scholarship Council (CSC) for financial support.

Return