Journal Home > Volume 9 , Issue 1

Nanomaterials with electrochemical activity are always suffering from aggregations, particularly during the high-temperature synthesis processes, which will lead to decreased energy-storage performance. Here, hierarchically structured lithium titanate/nitrogen-doped porous graphene fiber nanocomposites were synthesized by using confined growth of Li4Ti5O12 (LTO) nanoparticles in nitrogen-doped mesoporous graphene fibers (NPGF). NPGFs with uniform pore structure are used as templates for hosting LTO precursors, followed by high-temperature treatment at 800 ℃ under argon (Ar). LTO nanoparticles with size of several nanometers are successfully synthesized in the mesopores of NPGFs, forming nanostructured LTO/NPGF composite fibers. As an anode material for lithium-ion batteries, such nanocomposite architecture offers effective electron and ion transport, and robust structure. Such nanocomposites in the electrodes delivered a high reversible capacity (164 mAh·g–1 at 0.3 C), excellent rate capability (102 mAh·g–1 at 10 C), and long cycling stability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Confined growth of Li4Ti5O12 nanoparticles in nitrogen-doped mesoporous graphene fibers for high-performance lithium-ion battery anodes

Show Author's information Xilai Jia1Yunfeng Lu3( )Fei Wei2 ( )
State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumBeijing102249China
Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaLos AngelesCA90095USA

Abstract

Nanomaterials with electrochemical activity are always suffering from aggregations, particularly during the high-temperature synthesis processes, which will lead to decreased energy-storage performance. Here, hierarchically structured lithium titanate/nitrogen-doped porous graphene fiber nanocomposites were synthesized by using confined growth of Li4Ti5O12 (LTO) nanoparticles in nitrogen-doped mesoporous graphene fibers (NPGF). NPGFs with uniform pore structure are used as templates for hosting LTO precursors, followed by high-temperature treatment at 800 ℃ under argon (Ar). LTO nanoparticles with size of several nanometers are successfully synthesized in the mesopores of NPGFs, forming nanostructured LTO/NPGF composite fibers. As an anode material for lithium-ion batteries, such nanocomposite architecture offers effective electron and ion transport, and robust structure. Such nanocomposites in the electrodes delivered a high reversible capacity (164 mAh·g–1 at 0.3 C), excellent rate capability (102 mAh·g–1 at 10 C), and long cycling stability.

Keywords: lithium titanate, lithium-ion batteries, nitrogen-doped porous graphene fibers

References(57)

1

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

2

Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

3

Yi, T. -F.; Yang, S. -Y.; Xie, Y. Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J. Mater. Chem. A 2015, 3, 5750–5777.

4

Naoi, K.; Naoi, W.; Aoyagi, S.; Miyamoto, J. -I.; Kamino, T. New generation "nanohybrid supercapacitor". Acc. Chem. Res. 2013, 46, 1075–1083.

5

Wang, Y. -Q.; Gu, L.; Guo, Y. -G.; Li, H.; He, X. -Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L. -J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.

6

Lim, J.; Choi, E.; Mathew, V.; Kim, D.; Ahn, D.; Gim, J.; Kang, S. -H.; Kim, J. Enhanced high-rate performance of Li4Ti5O12 nanoparticles for rechargeable Li-ion batteries. J. Electrochem. Soc. 2011, 158, A275–A280.

7

Jiang, C. H.; Ichihara, M.; Honma, I.; Zhou, H. S. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochim. Acta 2007, 52, 6470–6475.

8

Haridas, A. K.; Sharma, C. S.; Rao, T. N. Donut-shaped Li4Ti5O12 structures as a high performance anode material for lithium ion batteries. Small 2015, 11, 290–294.

9

Zhang, Y. L.; Hu, X. B.; Xu, Y. L.; Ding, M. L. Recent progress of Li4Ti5O12 with different morphologies as anode material. Acta Chim. Sin. 2013, 71, 1341–1353.

10

Jung, H. -G.; Myung, S. -T.; Yoon, C. S.; Son, S. -B.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y. -K. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ. Sci. 2011, 4, 1345–1351.

11

Ganapathy, S.; Wagemaker, M. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. ACS Nano 2012, 6, 8702–8712.

12

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

13

Cheng, J.; Che, R. C.; Liang, C. Y.; Liu, J. W.; Wang, M.; Xu, J. J. Hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area for high rate lithium ion batteries. Nano Res. 2014, 7, 1043–1053.

14

Wang, X. F.; Liu, B.; Hou, X. J.; Wang, Q. F.; Li, W. W.; Chen, D.; Shen, G. Z. Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Res. 2014, 7, 1073–1082.

15

Xu, H. H.; Hu, X. L.; Sun, Y. M.; Luo, W.; Chen, C. J.; Liu, Y.; Huang, Y. H. Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage. Nano Energy 2014, 10, 163–171.

16

Feckl, J. M.; Fominykh, K.; Döblinger, M.; Fattakhova-Rohlfing, D.; Bein, T. Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew. Chem. , Int. Ed. 2012, 51, 7459–7463.

17

Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502–6506.

18

Chen, S.; Xin, Y. L.; Zhou, Y. Y.; Ma, Y. R.; Zhou, H. H.; Qi, L. M. Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ. Sci. 2014, 7, 1924–1930.

19

Liu, J.; Song, K. P.; van Aken, P. A.; Maier, J.; Yu, Y. Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Lett. 2014, 14, 2597–2603.

20

Kang, E.; Jung, Y. S.; Kim, G. H.; Chun, J.; Wiesner, U.; Dillon, A. C.; Kim, J. K.; Lee, J. Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method. Adv. Funct. Mater. 2011, 21, 4349–4357.

21

Sorensen, E. M.; Barry, S. J.; Jung, H. -K.; Rondinelli, J. M.; Vaughey, J. T.; Poeppelmeier, K. R. Three-dimensionally ordered macroporous Li4Ti5O12: Effect of wall structure on electrochemical properties. Chem. Mater. 2006, 18, 482–489.

22

Kubiak, P.; Garcia, A.; Womes, M.; Aldon, L.; Olivier- Fourcade, J.; Lippens, P. -E.; Jumas, J. -C. Phase transition in the spinel Li4Ti5O12 induced by lithium insertion: Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe. J. Power Sources 2003, 119–121, 626–630.

23

Chen, C. H.; Vaughey, J. T.; Jansen, A. N.; Dees, D. W.; Kahaian, A. J.; Goacher, T.; Thackeray, M. M. Studies of Mg-substituted Li4−xMgxTi5O12 spinel electrodes (0 ≤ x ≤ 1) for lithium batteries. J. Electrochem. Soc. 2001, 148, A102– A104.

24

Li, B. H.; Han, C. P.; He, Y. -B.; Yang, C.; Du, H. D.; Yang, Q. -H.; Kang, F. Y. Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 2012, 5, 9595–9602.

25

Zhu, G. -N.; Wang, C. -X.; Xia, Y. -Y. A comprehensive study of effects of carbon coating on Li4Ti5O12 anode material for lithium-ion batteries. J. Electrochem. Soc. 2011, 158, A102–A109.

26

Zhang, Z. H.; Li, G. C.; Peng, H. R.; Chen, K. Z. Hierarchical hollow microspheres assembled from N-doped carbon coated Li4Ti5O12 nanosheets with enhanced lithium storage properties. J. Mater. Chem A 2013, 1, 15429–15434.

27

Pan, H. L.; Zhao, L.; Hu, Y. -S.; Li, H.; Chen, L. Q. Improved Li-storage performance of Li4Ti5O12 coated with C-N compounds derived from pyrolysis of urea through a low-temperature approach. ChemSusChem 2012, 5, 526–529.

28

Shen, L. F.; Zhang, X. G.; Uchaker, E.; Yuan, C. Z.; Cao, G. Z. Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv. Energy Mater. 2012, 2, 691–698.

29

Shen, L. F.; Li, H. S.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. General strategy for designing core–shell nanostructured materials for high-power lithium ion batteries. Nano Lett. 2012, 12, 5673–5678.

30

Kim, K. -T.; Yu, C. -Y.; Yoon, C. S.; Kim, S. -J.; Sun, Y. -K.; Myung, S. -T. Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries. Nano Energy 2015, 12, 725–734.

31

Li, H. Q.; Zhou, H. S. Enhancing the performances of Li- ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.

32

Yuan, T.; Cai, R.; Shao, Z. P. Different effect of the atmospheres on the phase formation and performance of Li4Ti5O12 prepared from ball-milling-assisted solid-phase reaction with pristine and carbon-precoated TiO2 as starting materials. J. Phys. Chem. C 2011, 115, 4943–4952.

33

Jia, X. L.; Kan, Y. F.; Zhu, X.; Ning, G. Q.; Lu, Y. F.; Wei, F. Building flexible Li4Ti5O12/CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability. Nano Energy 2014, 10, 344–352.

34

Yuan, T.; Li, W. -T.; Zhang, W. M.; He, Y. -S.; Zhang, C. M.; Liao, X. -Z.; Ma, Z. -F. One-pot spray-dried graphene sheets- encapsulated nano-Li4Ti5O12 microspheres for a hybrid BatCap system. Ind. Eng. Chem. Res. 2014, 53, 10849–10857.

35

Zhu, G. -N.; Liu, H. -J.; Zhuang, J. -H.; Wang, C. -X.; Wang, Y. -G.; Xia, Y. -Y. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016–4022.

36

Vujković, M.; Stojković, I.; Mitrić, M.; Mentus, S.; Cvjetićanin, N. Hydrothermal synthesis of Li4Ti5O12/C nanostructured composites: Morphology and electrochemical performance. Mater. Res. Bull. 2013, 48, 218–223.

37

Liu, T. T.; Ni, H. F.; Song, W. -L.; Fan, L. -Z. Enhanced electrochemical performance of Li4Ti5O12 as anode material for lithium-ion batteries with different carbons as support. J. Alloys Compd. 2015, 646, 189–194.

38

Shi, Y.; Wen, L.; Li, F.; Cheng, H. -M. Nanosized Li4Ti5O12/ graphene hybrid materials with low polarization for high rate lithium ion batteries. J. Power Sources 2011, 196, 8610– 8617.

39

Li, N.; Chen, Z. P.; Ren, W. C.; Li, F.; Cheng, H. -M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. USA 2012, 109, 17360–17365.

40

Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

41

Zhao, B. T.; Ran, R.; Liu, M. L.; Shao, Z. P. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Mater. Sci. Eng. : R 2015, 98, 1–71.

42

Naoi, K.; Ishimoto, S.; Isobe, Y.; Aoyagi, S. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources 2010, 195, 6250–6254.

43

Tang, Y. F.; Huang, F. Q.; Zhao, W.; Liu, Z. Q.; Wan, D. Y. Synthesis of graphene-supported Li4Ti5O12 nanosheets for high rate battery application. J. Mater. Chem. 2012, 22, 11257–11260.

44

Ni, H. F.; Fan, L. -Z. Nano-Li4Ti5O12 anchored on carbon nanotubes by liquid phase deposition as anode material for high rate lithium-ion batteries. J. Power Sources 2012, 214, 195–199.

45

Shi, Y.; Gao, J.; Abruña, H. D.; Liu, H. K.; Li, H. J.; Wang, J. Z.; Wu, Y. P. Rapid synthesis of Li4Ti5O12/graphene composite with superior rate capability by a microwave- assisted hydrothermal method. Nano Energy 2014, 8, 297–304.

46

Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Yang, S. D.; Lu, X. J. In situ synthesis of high-loading Li4Ti5O12- graphene hybrid nanostructures for high rate lithium ion batteries. Nanoscale 2011, 3, 572–574.

47

Jia, X. L.; Zhang, G. L.; Wang, T. H.; Zhu, X.; Yang, F.; Li, Y. F.; Lu, Y. F.; Wei, F. Monolithic nitrogen-doped graphene frameworks as ultrahigh-rate anodes for lithium ion batteries. J. Mater. Chem. A 2015, 3, 15738–15744.

48

Zhao, L.; Hu, Y. -S.; Li, H.; Wang, Z. X.; Chen, L. Q. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 2011, 23, 1385–1388.

49

Jia, X. L.; Cheng, Y. H.; Lu, Y. F.; Wei, F. Building robust carbon nanotube-interweaved-nanocrystal architecture for high-performance anode materials. ACS Nano 2014, 8, 9265–9273.

50

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. -L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

51

Xu, G. B.; Li, W.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K. Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high- performance anode material for lithium ion batteries. J. Power Sources 2015, 276, 247–254.

52

Yang, Y. C.; Qiao, B. H.; Yang, X. M.; Fang, L. B.; Pan, C. C.; Song, W. X.; Hou, H. S.; Ji, X. B. Lithium titanate tailored by cathodically induced graphene for an ultrafast lithium ion battery. Adv. Funct. Mater. 2014, 24, 4349–4356.

53

Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N. Nanostructured ternary electrodes for energy-storage applications. Adv. Energy Mater. 2012, 2, 381–389.

54

Jia, X. L.; Chen, Z.; Suwarnasarn, A.; Rice, L.; Wang, X. L.; Sohn, H. S.; Zhang, Q.; Wu, B. M.; Wei, F.; Lu, Y. F. High- performance flexible lithium-ion electrodes based on robust network architecture. Energy Environ. Sci. 2012, 5, 6845– 6849.

55

Song, M. -S.; Benayad, A.; Choi, Y. -M.; Park, K. -S. Does Li4Ti5O12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity. Chem. Commun. 2012, 48, 516–518.

56

Young, D.; Ransil, A.; Amin, R.; Li, Z.; Chiang, Y. -M. Electronic conductivity in the Li4/3Ti5/3O4–Li7/3Ti5/3O4 system and variation with state-of-charge as a Li battery anode. Adv. Energy Mater. 2013, 3, 1125–1129.

57

Zhang, Z. H.; Li, G. C.; Peng, H. R.; Chen, K. Z. Hierarchical hollow microspheres assembled from N-doped carbon coated Li4Ti5O12 nanosheets with enhanced lithium storage properties. J. Mater. Chem. A 2013, 1, 15429–15434.

File
nr-9-1-230_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 October 2015
Revised: 04 January 2016
Accepted: 04 January 2016
Published: 19 January 2016
Issue date: January 2016

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2016

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 21306102 and 21422604), and partially supported by Science Foundation of China University of Petroleum, Beijing (No. 2462013YJRC028).

Return