Journal Home > Volume 9 , Issue 4

Planar micro-supercapacitors (MSCs) have drawn extensive research attention owing to their unique structural design and size compatibility for microelectronic devices. Graphene has been widely used to improve the performance of microscale electrochemical capacitors. However, investigations of an intrinsic electrochemical mechanism for graphene-based microscale devices are still not sufficient. Here, micro-supercapacitors with various typical architectures are fabricated as models to study the graphene effect, and their electrochemical performance is also evaluated. The results show that ionic accessibility and adsorption are greatly improved after the introduction of the holey graphene intermediate layer. This study provides a new route to understand intrinsic electrochemical behaviors and possesses exciting potential for highly efficient on-chip micro-energy storage.

File
nr-9-4-1012_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 November 2015
Revised: 19 December 2015
Accepted: 24 December 2015
Published: 11 March 2016
Issue date: April 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2013CB934103 and 2012CB933003), the International Science & Technology Cooperation Program of China (No. 2013DFA50840), the National Natural Science Foundation of China (Nos. 51522001 and 51272197), the National Science Fund for Hubei Provincial Natural Science Young Scholars (No. 51425204), the Hubei Science Fund for Distinguished Young Scholars (No. 2014CFA035), the Fundamental Research Funds for the Central Universities (WUT: 2015-PY-2, 2015-CL-A1-03). We are deeply thankful to Prof. Charles M. Lieber of Harvard University, Prof. Dongyuan Zhao of Fudan University, and Prof. Jun Liu of Pacific Northwest National Laboratory for their stimulating discussion and kind help.

Return