Journal Home > Volume 9 , Issue 4

We demonstrate an easy and scalable low-temperature process to convert porous ternary complex metal oxide nanoparticles from solution-synthesized core/shell metal oxide nanoparticles by thermal annealing. The final products demonstrate superior electrochemical properties with a large capacity and high stability during fast charging/discharging cycles for potential applications as advanced lithium-ion battery (LIB) electrode materials. In addition, a new breakdown mechanism was observed on these novel electrode materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles

Show Author's information Jaewon Lee2Huazhang Zhu3Gautam Ganapati Yadav2,James Caruthers2Yue Wu1,3( )
School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghai200235China
School of Chemical EngineeringPurdue University, 480 Stadium Mall Drive, West LafayetteIN47907USA
Department of Chemical and Biological EngineeringIowa State University, Sweeney Hall, AmesIA50011USA

Present address: Energy Institute, City College of New York, New York, NY 10031, USA

Abstract

We demonstrate an easy and scalable low-temperature process to convert porous ternary complex metal oxide nanoparticles from solution-synthesized core/shell metal oxide nanoparticles by thermal annealing. The final products demonstrate superior electrochemical properties with a large capacity and high stability during fast charging/discharging cycles for potential applications as advanced lithium-ion battery (LIB) electrode materials. In addition, a new breakdown mechanism was observed on these novel electrode materials.

Keywords: nanoparticle, lithium-ion battery, porous, ternary complex metal oxide, core/shell nanoparticles

References(43)

1

Tsuzuki, T. Commercial scale production of inorganic nanoparticles. Int. J. Nanotechnol. 2009, 6, 567-578.

2

Prasad Yadav, T.; Manohar Yadav, R.; Pratap Singh, D. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci. Nanotechnol. 2012, 2, 22-48.

3

Seo, W. S.; Jo, H. H.; Lee, K.; Kim, B.; Oh, S. J.; Park, J. T. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem., Int. Ed. 2004, 43, 1115-1117.

4

Liang, L. H.; Li, B. W. Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B 2006, 73, 153303.

5

Qiu, B.; Sun, L.; Ruan, X. L. Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study. Phys. Rev. B 2011, 83, 035312.

6

Wu, X. Y.; Li, S. M.; Wang, B.; Liu, J. H.; Yu, M. Controllable synthesis of micro/nano-structured MnCo2O4 with multiporous core-shell architectures as high-performance anode materials for lithium-ion batteries. New J. Chem. 2015, 39, 8416-8423.

7

Li, J. F.; Xiong, S. L.; Li, X. W.; Qian, Y. T. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 2013, 5, 2045-2054.

8

Hu, L.; Zhong, H.; Zheng, X.; Huang, Y.; Zhang, P.; Chen, Q. CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2012, 2, 986.

9

Wang, Y. X. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35-40.

10

Lee, J.; Yang, J.; Ko, H.; Oh, S.; Kang, J.; Son, J.; Lee, K.; Lee, S. W.; Yoon, H. G.; Suh, J. S. et al. Multifunctional magnetic gold nanocomposites: Human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv. Funct. Mater. 2008, 18, 258-264.

11

Ha, T. L.; Kim, H. J.; Shin, J.; Im, G. H.; Lee, J. W.; Heo, H.; Yang, J.; Kang, C. M.; Choe, Y. S.; Lee, J. H. et al. Development of target-specific multimodality imaging agent by using hollow manganese oxide nanoparticles as a platform. Chem. Commun. 2011, 47, 9176-9178.

12

Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.

13

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271-4301.

14

Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903-1911.

15

Yadav, G. G.; Susoreny, J. A.; Zhang, G. Q.; Yang, H. R.; Wu, Y. Nanostructure-based thermoelectric conversion: An insight into the feasibility and sustainability for large-scale deployment. Nanoscale 2011, 3, 3555-3562.

16

Yadav, G. G.; David, A.; Favaloro, T.; Yang, H. R.; Shakouri, A.; Caruthers, J.; Wu, Y. Synthesis and investigation of thermoelectric and electrochemical properties of porous Ca9Co12O28 nanowires. J. Mater. Chem. A 2013, 1, 11901-11908.

17

Yadav, G. G.; Zhang, G. Q.; Qiu, B.; Susoreny, J. A.; Ruan, X. L.; Wu, Y. Self-templated synthesis and thermal conductivity investigation for ultrathin perovskite oxide nanowires. Nanoscale 2011, 3, 4078-4081.

18

Hu, Y. Y.; Liu, Z. G.; Nam, K. W.; Borkiewicz, O. J.; Cheng, J.; Hua, X.; Dunstan, M. T.; Yu, X. Q.; Wiaderek, K. M.; Du, L. S. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 2013, 12, 1130-1136.

19

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

20

Huang, F.; Zhan, H.; Zhou, Y. H. Studies of nano-sized Co3O4 as anode materials for lithium-ion batteries. Chin. J. Chem. 2003, 21, 1275-1279.

21

Gao, J.; Lowe, M. A.; Abruña, H. D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem. Mater. 2011, 23, 3223-3227.

22

Wang, H. L.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978-13980.

23

Liu, H.; Wang, G. X.; Liu, J.; Qiao, S. Z.; Ahn, H. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 2011, 21, 3046-3052.

24

Deng, Y. F.; Zhang, Q. M.; Tang, S. D.; Zhang, L. T.; Deng, S. N.; Shi, Z. C.; Chen, G. H. One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem. Commun. 2011, 47, 6828-6830.

25

Li, J. F.; Xiong, S. L.; Liu, Y. R.; Ju, Z. C.; Qian, Y. T. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 981-988.

26

Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005-3011.

27

Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609-4613.

28

Mohamed, S. G.; Hung, T. -F.; Chen, C. -J.; Chen, C. K.; Hu, S. -F.; Liu, R. -S. Efficient energy storage capabilities promoted by hierarchical MnCo2O4 nanowire-based architectures. RSC Adv. 2014, 4, 17230-17235.

29

Zhang, G. Q.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Strongly coupled carbon nanofiber-metal oxide coaxial nanocables with enhanced lithium storage properties. Energy Environ. Sci. 2014, 7, 302-305.

30

Guo, Y.; Yu, L.; Wang, C. Y.; Lin, Z.; Lou, X. W. Hierarchical tubular structures composed of Mn-based mixed metal oxide nanoflakes with enhanced electrochemical properties. Adv. Funct. Mater. 2015, 25, 5184-5189.

31

Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745-748.

32

Hou, X. J.; Wang, X. F.; Liu, B.; Wang, Q. F.; Luo, T.; Chen, D.; Shen, G. Z. Hierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale 2014, 6, 8858-8864.

33

De Guzman, R. N.; Awaluddin, A.; Shen, Y. F.; Tian, Z. R.; Suib, S. L.; Ching, S.; O'Young, C. L. Electrical resistivity measurements on manganese oxides with layer and tunnel structures: Birnessites, todorokites, and cryptomelanes. Chem. Mater. 1995, 7, 1286-1292.

34

Shinde, V. R.; Mahadik, S. B.; Gujar, T. P.; Lokhande, C. D. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl. Surf. Sci. 2006, 252, 7487-7492.

35

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-192.

36

Zhu, G. N.; Liu, H. J.; Zhuang, J. H.; Wang, C. X.; Wang, Y. G.; Xia, Y. Y. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016-4022.

37

Wang, Y. G.; Li, H. Q.; He, P.; Hosono, E.; Zhou, H. S. Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, 1294-1305.

38

Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J. M. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 2002, 149, A627-A634.

39

Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 2007, 19, 2336-2340.

40

Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. B.; Tarascon, J. M. Effect of particle size on lithium intercalation into α Fe2O3. J. Electrochem. Soc. 2003, 150, A133-A139.

41

Binotto, G.; Larcher, D.; Prakash, A. S.; Urbina, R. H.; Hegde, M. S.; Tarascon, J. M. Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders. Chem. Mater. 2007, 19, 3032-3040.

42

Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632-637.

43

Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

File
nr-9-4-996_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 November 2015
Revised: 10 December 2015
Accepted: 18 December 2015
Published: 23 February 2016
Issue date: April 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors acknowledge the support from the National Science Foundation Electronic and Photonic Materials (No. 1206425) and the startup fund from Iowa State University. Y. W. also thanks the support from the Eastern Scholar Program.

Return