Journal Home > Volume 9 , Issue 4

New types of antimicrobial systems are urgently needed owing to the emergence of pathogenic microbial strains that gain resistance to antibiotics commonly used in daily life and medical care. In this study, we developed for the first time a broad-spectrum and robust antimicrobial thin film coating based on large-area chemical vapor deposition (CVD)-grown graphene-wrapped silver nanowires (AgNWs). The antimicrobial graphene/AgNW hybrid coating can be applied on commercial flexible transparent ethylene vinyl acetate/ polyethylene terephthalate (EVA/PET) plastic films by a full roll-to-roll process. The graphene/AgNW hybrid coating showed broad-spectrum antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus), and fungi (Candida albicans). This effect was attributed to a weaker microbial attachment to the ultra-smooth graphene film and the sterilization capacity of Ag+, which is sustainably released from the AgNWs and presumably enhanced by the electrochemical corrosion of AgNWs. Moreover, the robust antimicrobial activity of the graphene/AgNW coating was reinforced by AgNW encapsulation by graphene. Furthermore, the antimicrobial efficiency could be enhanced to ~100% by water electrolysis by using the conductive graphene/AgNW coating as a cathode. We developed a transparent and flexible antimicrobial cover made of graphene/AgNW/EVA/PET and an antimicrobial denture coated by graphene/ AgNW, to show the potential applications of the antimicrobial materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating

Show Author's information Chen Zhao1,§Bing Deng2,§Guanchu Chen2Bo Lei2Hong Hua1Hailin Peng2( )Zhimin Yan1( )
Department of Oral MedicinePeking University School of StomatologyBeijing100081China
Center for NanochemistryBeijing Science and Engineering Center for NanocarbonsBeijing National Laboratory for Molecular Sciences (BNLMS)College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China

§These authors contributed equally to this work.

Abstract

New types of antimicrobial systems are urgently needed owing to the emergence of pathogenic microbial strains that gain resistance to antibiotics commonly used in daily life and medical care. In this study, we developed for the first time a broad-spectrum and robust antimicrobial thin film coating based on large-area chemical vapor deposition (CVD)-grown graphene-wrapped silver nanowires (AgNWs). The antimicrobial graphene/AgNW hybrid coating can be applied on commercial flexible transparent ethylene vinyl acetate/ polyethylene terephthalate (EVA/PET) plastic films by a full roll-to-roll process. The graphene/AgNW hybrid coating showed broad-spectrum antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus), and fungi (Candida albicans). This effect was attributed to a weaker microbial attachment to the ultra-smooth graphene film and the sterilization capacity of Ag+, which is sustainably released from the AgNWs and presumably enhanced by the electrochemical corrosion of AgNWs. Moreover, the robust antimicrobial activity of the graphene/AgNW coating was reinforced by AgNW encapsulation by graphene. Furthermore, the antimicrobial efficiency could be enhanced to ~100% by water electrolysis by using the conductive graphene/AgNW coating as a cathode. We developed a transparent and flexible antimicrobial cover made of graphene/AgNW/EVA/PET and an antimicrobial denture coated by graphene/ AgNW, to show the potential applications of the antimicrobial materials.

Keywords: graphene, chemical vapor deposition (CVD), silver nanowires, antimicrobial, electrochemical corrosion

References(57)

1

Irwansyah, I.; Li, Y. Q.; Shi, W. X.; Qi, D. P.; Leow, W. R.; Tang, M. B. Y.; Li, S. Z.; Chen, X. D. Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv. Mater. 2015, 27, 648–654.

2

Yang, C.; Ding, X.; Ono, R. J.; Lee, H.; Hsu, L. Y.; Tong, Y. W.; Hedrick, J.; Yang, Y. Y. Brush-like polycarbonates containing dopamine, cations, and PEG providing a broad- spectrum, antibacterial, and antifouling surface via one-step coating. Adv. Mater. 2014, 26, 7346–7351.

3

Aviv, M.; Berdicevsky, I.; Zilberman, M. Gentamicin-loaded bioresorbable films for prevention of bacterial infections associated with orthopedic implants. J. Biomed. Mater. Res. A 2007, 83, 10–19.

4

Gao, P.; Nie, X.; Zou, M. J.; Shi, Y. J.; Cheng, G. Recent advances in materials for extended-release antibiotic delivery system. J. Antibiot. 2011, 64, 625–634.

5

Fischbach, M. A.; Walsh, C. T. Antibiotics for emerging pathogens. Science 2009, 325, 1089–1093.

6

Huh, A. J.; Kwon, Y. J. "Nanoantibiotics": A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Controlled Release 2011, 156, 128–145.

7

Zhu, C. L.; Yang, Q.; Liu, L. B.; Lv, F. T.; Li, S. Y.; Yang, G. Q.; Wang, S. Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells. Adv. Mater. 2011, 23, 4805–4810.

8

Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353.

9

Kumar, A.; Vemula, P. K.; Ajayan, P. M.; John, G. Silver- nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 2008, 7, 236–241.

10

Kvitek, L.; Panacek, A.; Soukupova, J.; Kolar, M.; Vecerova, R.; Prucek, R.; Holecova, M.; Zboril, R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C 2008, 112, 5825–5834.

11

Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720.

12

Schoen, D. T.; Schoen, A. P.; Hu, L. B.; Kim, H. S.; Heilshorn, S. C.; Cui, Y. High speed water sterilization using one- dimensional nanostructures. Nano Lett. 2010, 10, 3628–3632.

13

Nateghi, M. R.; Shateri-Khalilabad, M. Silver nanowire- functionalized cotton fabric. Carbohydr. Polym. 2015, 117, 160–168.

14

Visnapuu, M.; Joost, U.; Juganson, K.; Künnis-Beres, K.; Kahru, A.; Kisand, V.; Ivask, A. Dissolution of silver nanowires and nanospheres dictates their toxicity to Escherichia coli. BioMed Res. Int. 2013, 2013, Article ID 819252.

15

Tang, C. L.; Sun, W.; Lu, J. M.; Yan, W. Role of the anions in the hydrothermally formed silver nanowires and their antibacterial property. J. Colloid Interface Sci. 2014, 416, 86–94.

16

Natalio, F.; André, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530–535.

17

Magrez, A.; Kasas, S.; Salicio, V.; Pasquier, N.; Seo, J. W.; Celio, M.; Catsicas, S.; Schwaller, B.; Forró, L. Cellular toxicity of carbon-based nanomaterials. Nano Lett. 2006, 6, 1121–1125.

18

Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.; Sun, X. M.; Dai, H. J.; Gambhir, S. S. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 2008, 3, 216–221.

19

Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323.

20

Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736.

21

Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980.

22

Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601.

23

Pham, V. T. H.; Truong, V. K.; Quinn, M. D. J.; Notley, S. M.; Guo, Y. C.; Baulin, V. A.; Kobaisi, M. A.; Crawford, R. J.; Ivanova, E. P. Graphene induces formation of pores that kill spherical and rod-shaped bacteria. ACS Nano 2015, 9, 8458–8467.

24

LeOuay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354.

25

Lemire, J. A.; Harrison, J. J.; Turner, R. J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384.

26

Rizzello, L.; Pompa, P. P. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Rev. 2014, 43, 1501–1518.

27

Lok, C. N.; Ho, C. M.; Chen, R.; He, Q. Y.; Yu, W. Y.; Sun, H.; Tam, P. K. H.; Chiu, J. F.; Che, C. M. Silver nanoparticles: Partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007, 12, 527–534.

28

Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271– 4275.

29

Reinsch, B. C.; Levard, C.; Li, Z.; Ma, R.; Wise, A.; Gregory, K. B.; Brown, G. E.; Lowry, G. V. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ. Sci. Technol. 2012, 46, 6992–7000.

30

Levard, C.; Mitra, S.; Yang, T.; Jew, A. D.; Badireddy, A. R.; Lowry, G. V.; Brown, G. E. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ. Sci. Technol. 2013, 47, 5738–5745.

31

Xu, W. P.; Zhang, L. C.; Li, J. P.; Lu, Y.; Li, H. H.; Ma, Y. N.; Wang, W. D.; Yu, S. H. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J. Mater. Chem. 2011, 21, 4593–4597.

32

Ma, J. Z.; Zhang, J. T.; Xiong, Z. G.; Yong, Y.; Zhao, X. S. Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J. Mater. Chem. 2011, 21, 3350–3352.

33

Kholmanov, I. N.; Stoller, M. D.; Edgeworth, J.; Lee, W. H.; Li, H. F.; Lee, J. H.; Barnhart, C.; Potts, J. R.; Piner, R.; Akinwande, D. et al. Nanostructured hybrid transparent conductive films with antibacterial properties. ACS Nano 2012, 6, 5157–5163.

34

Li, C.; Wang, X. S.; Chen, F.; Zhang, C. L.; Zhi, X.; Wang, K.; Cui, D. X. The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials 2013, 34, 3882–3890.

35

Li, J. H.; Wang, G.; Zhu, H. Q.; Zhang, M.; Zheng, X. H.; Di, Z. F.; Liu, X. Y.; Wang, X. Antibacterial activity of large- area monolayer graphene film manipulated by charge transfer. Sci. Rep. 2014, 4, 4359.

36

Dellieu, L.; Lawarée, E.; Reckinger, N.; Didembourg, C.; Letesson, J. J.; Sarrazin, M.; Deparis, O.; Matroule, J. Y.; Deparis, J. F. Do CVD grown graphene films have antibacterial activity on metallic substrates? Carbon 2015, 84, 310–316.

37

Chen, R. Y.; Das, S. R.; Jeong, C.; Khan, M. R.; Janes, D. B.; Alam, M. A. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv. Funct. Mater. 2013, 23, 5150–5158.

38

Lee, M. S.; Lee, K.; Kim, S. Y.; Lee, H.; Park, J.; Choi, K. H.; Kim, H. K.; Kim, D. G.; Lee, D. Y.; Nam, S. et al. High- performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 2013, 13, 2814–2821.

39

Deng, B.; Hsu, P. C.; Chen, G. C.; Chandrashekar, B. N.; Liao, L.; Ayitimuda, Z.; Wu, J. X.; Guo, Y. F.; Lin, L.; Zhou, Y. et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 2015, 15, 4206– 4213.

40

Lee, G. H.; Cooper, R. C.; An, S. J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerherg, A. G.; Lee, C.; Crawford, B.; Oliver, W. et al. High-strength chemical-vapor deposited graphene and grain boundaries. Science 2013, 340, 1073– 1076.

41

O'Hern, S. C.; Stewart, C. A.; Boutilier, M. S. H.; Idrobo, J. C.; Bhaviripudi, S.; Das, S. K.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 2012, 6, 10130–10138.

42

Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface- enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229– 1233.

43

An, Y. H.; Friedman, R. J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 1998, 43, 338–348.

DOI
44

Mcallister, E. W.; Carey, L. C.; Brady, P. G.; Heller, R.; Kovacs, S. G. The role of polymeric surface smoothness of biliary stents in bacterial adherence, biofilm deposition, and stent occlusion. Gastrointest. Endosc. 1993, 39, 422–425.

45

Quirynen, M.; van der Mei, H. C.; Bollen, C. M. L.; Schotte, A.; Marechal, M.; Doornbusch, G. I.; Naert, I.; Busscher, H. J.; van Steenberghe, D. An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. J. Dent. Res. 1993, 72, 1304–1309.

46

Hogt, A. H.; Dankert, J.; DeVries, J. A.; Feijen, J. Adhesion of coagulase-negative staphylococci to biomaterials. J. Gen. Microbiol. 1983, 129, 2959–2968.

47

Ludwicka, A.; Jansen, B.; Wadström, T.; Pulverer, G. Attachment of staphylococci to various syntheticpolymers. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 1984, 256, 479–489.

48

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

49

Taherian, F.; Marcon, V.; van der Vegt, N. F. A.; Leroy, F. What is the contact angle of water on graphene? Langmuir 2013, 29, 1457–1465.

50

Schriver, M.; Regan, W.; Gannett, W. J.; Zaniewski, A. M.; Crommie, M. F.; Zettl, A. Graphene as a long-term metal oxidation barrier: Worse than nothing. ACS Nano 2013, 7, 5763–5768.

51

Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036.

52

Zhou, M.; Zhai, Y. M.; Dong, S. J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613.

53

Li, P.; Zhou, C. C.; Rayatpisheh, S.; Ye, K.; Poon, Y. F.; Hammond, P. T.; Duan, H. W.; Chan-Park, M. B. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv. Mater. 2012, 24, 4130–4137.

54

Kholmanov, I. N.; Magnuson, C. W.; Aliev, A. E.; Li, H. F.; Zhang, B.; Suk, J. W.; Zhang, L. L.; Peng, E.; Mousavi, S. H.; Khanikaev, A. B. et al. Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 2012, 12, 5679–5683.

55

Lv, M.; Su, S.; He, Y.; Huang, Q.; Hu, W. B.; Li, D.; Fan, C. H.; Lee, S. T. Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv. Mater. 2010, 22, 5463–5467.

56

Christensen, F. M.; Johnston, H. J.; Stone, V.; Aitken, R. J.; Hankin, S.; Peters, S.; Aschberger, K. Nano-silver-feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 2010, 4, 284–295.

57

Bakhshi, M.; Taheri, J. B.; Shabestari, S. B.; Tanik, A.; Pahlevan, R. Comparison of therapeutic effect of aqueous extract of garlic and nystatin mouthwash in denture stomatitis. Gerodontology 2012, 29, e680–e684.

File
nr-9-4-963_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 November 2015
Revised: 09 December 2015
Accepted: 18 December 2015
Published: 04 March 2016
Issue date: April 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 81000441, 21222303, and 21173004), the National Basic Research Program of China (Nos. 2014CB932500), and National Program for Support of Top-Notch Young Professionals.

Return