Journal Home > Volume 9 , Issue 4

Conducting polymers generally show high specific capacitance but suffer from poor rate capability and rapid capacitance decay, which greatly limits their practical applications in supercapacitor electrodes. To this end, many studies have focused on improving the overall capacitive performance by synthesizing nanostructured conducting polymers or by depositing a range of coatings to increase the active surface area exposed to the electrolyte and enhance the charge transport efficiency and structural stability. Despite this, simultaneously achieving high specific capacitance, good rate performance, and long cycle life remains a considerable challenge. Among the various two-dimensional (2D) layered materials, octahedral (1T) phase molybdenum disulfide (MoS2) nanosheets have high electrical conductivity, large specific surface areas, and unique surface chemical characteristics, making them an interesting substrate for the controlled growth of nanostructured conducting polymers. This paper reports the rational synthesis of carbon shell-coated polyaniline (PANI) grown on 1T MoS2 monolayers (MoS2/PANI@C). The composite electrode comprised of MoS2/PANI@C with a ~3 nm carbon shell exhibited a remarkable specific capacitance of up to 678 F·g–1 (1 mV·s–1), superior capacity retention of 80% after 10, 000 cycles and good rate performance (81% at 10 mV·s–1) due to the multiple synergic effects between the PANI nanostructure and 1T MoS2 substrates as well as protection by the uniform thin carbon shell. These properties are comparable to the best overall capacitive performance achieved for conducting polymers-based supercapacitor electrodes reported thus far.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for high-performance supercapacitors

Show Author's information Chao Yang1Zhongxin Chen1Imran Shakir2Yuxi Xu1( )Hongbin Lu1( )
State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceCollaborative Innovation Center of Polymers and Polymer Composite MaterialsFudan UniversityShanghai200433China
Sustainable Energy Technologies (SET) center College of EngineeringKing Saud UniversityPO-BOX 800Riyadh11421Kingdom of Saudi Arabia

Abstract

Conducting polymers generally show high specific capacitance but suffer from poor rate capability and rapid capacitance decay, which greatly limits their practical applications in supercapacitor electrodes. To this end, many studies have focused on improving the overall capacitive performance by synthesizing nanostructured conducting polymers or by depositing a range of coatings to increase the active surface area exposed to the electrolyte and enhance the charge transport efficiency and structural stability. Despite this, simultaneously achieving high specific capacitance, good rate performance, and long cycle life remains a considerable challenge. Among the various two-dimensional (2D) layered materials, octahedral (1T) phase molybdenum disulfide (MoS2) nanosheets have high electrical conductivity, large specific surface areas, and unique surface chemical characteristics, making them an interesting substrate for the controlled growth of nanostructured conducting polymers. This paper reports the rational synthesis of carbon shell-coated polyaniline (PANI) grown on 1T MoS2 monolayers (MoS2/PANI@C). The composite electrode comprised of MoS2/PANI@C with a ~3 nm carbon shell exhibited a remarkable specific capacitance of up to 678 F·g–1 (1 mV·s–1), superior capacity retention of 80% after 10, 000 cycles and good rate performance (81% at 10 mV·s–1) due to the multiple synergic effects between the PANI nanostructure and 1T MoS2 substrates as well as protection by the uniform thin carbon shell. These properties are comparable to the best overall capacitive performance achieved for conducting polymers-based supercapacitor electrodes reported thus far.

Keywords: molybdenum disulfide, supercapacitor, polyaniline, carbon shell, cycle stability

References(53)

1

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

2

Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled three- dimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666–1675.

3

Yu, D. S.; Goh, K.; Wang, H.; Wei, L.; Jiang, W. C.; Zhang, Q.; Dai, L. M.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562.

4

Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.

5

Hercule, K. M.; Wei, Q. L.; Khan, A. M.; Zhao, Y. L.; Tian, X. C.; Mai, L. Q. Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability. Nano Lett. 2013, 13, 5685–5691.

6

Yang, C.; Dong, L.; Chen, Z. X.; Lu, H. B. High-performance all-solid-state supercapacitor based on the assembly of graphene and manganese (Ⅱ) phosphate nanosheets. J. Phys. Chem. C 2014, 118, 18884–18891.

7

Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.

8

Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y. B.; Kang, J. K.; Yaghi, O. M. Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 2014, 8, 7451–7457.

9

Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.

10

Feng, L. D.; Zhu, Y. F.; Ding, H. Y.; Ni, C. Y. Recent progress in nickel based materials for high performance pseudocapacitor electrodes. J. Power Sources 2014, 267, 430–444.

11

Yin, H. J.; Zhao, S. L.; Wan, J. W.; Tang, H. J.; Chang, L.; He, L. C.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Three- dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Adv. Mater. 2013, 25, 6270–6276.

12

Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850–1865.

13

Wang, D. -W.; Li, F.; Zhao, J. P.; Ren, W. C.; Chen, Z. -G.; Tan, J.; Wu, Z. -S.; Gentle, I.; Lu, G. Q.; Cheng, H. -M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745–1752.

14

Xu, J. J.; Wang, K.; Zu, S. Z.; Han, B. H.; Wei, Z. X. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 2010, 4, 5019–5026.

15

Wu, Q.; Xu, Y. X.; Yao, Z. Y.; Shi, G. Q. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 2010, 4, 1963–1970.

16

Zhao, Y.; Liu, B. R.; Pan, L. J.; Yu, G. H. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 2013, 6, 2856–2870.

17

Wang, K.; Wu, H. P.; Meng, Y. N.; Wei, Z. X. Conducting polymer nanowire arrays for high performance supercapacitors. Small 2014, 10, 14–31.

18

Xia, C.; Chen, W.; Wang, X. B.; Hedhili, M. N.; Wei, N. N.; Alshareef, H. N. Highly stable supercapacitors with conducting polymer core–shell electrodes for energy storage applications. Adv. Energy Mater. 2015, 5, 1401805.

19

Kim, B. C.; Kwon, J. S.; Ko, J. M.; Park, J. H.; Too, C. O.; Wallace, G. G. Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber. Synthetic Met. 2010, 160, 94–98.

20

Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C. B.; Liu, T. X. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl. Mater. Interfaces 2013, 5, 3382–3391.

21

Jiang, H.; Ma, J.; Li, C. Z. Polyaniline–MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors. J. Mater. Chem. 2012, 22, 16939–16942.

22

Wang, Z. L.; He, X. J.; Ye, S. H.; Tong, Y. X.; Li, G. R. Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage. ACS Appl. Mater. Interfaces 2014, 6, 642–647.

23

Chen, D.; Tang, L. H.; Li, J. H. Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010, 39, 3157–3180.

24

Zhang, L. L.; Zhao, X.; Stoller, M. D.; Zhu, Y. W.; Ji, H. X.; Murali, S.; Wu, Y. P.; Perales, S.; Clevenger, B.; Ruoff, R. S. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 2012, 12, 1806–1812.

25

Soon, J. M.; Loh, K. P. Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem. Solid- State Lett. 2007, 10, A250–A254.

26

Gopalakrishnan, K.; Sultan, S.; Govindaraj, A.; Rao, C. N. R. Supercapacitors based on composites of PANI with nanosheets of nitrogen-doped RGO, BC1.5N, MoS2 and WS2. Nano Energy 2015, 12, 52–58.

27

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

28

Tang, H. J.; Wang, J. Y.; Yin, H. J.; Zhao, H. J.; Wang, D.; Tang, Z. Y. Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 2015, 27, 1117–1123.

29

Hao, C. X.; Wen, F. S.; Xiang, J. Y.; Wang, L. M.; Hou, H.; Su, Z. B.; Hu, W. T.; Liu, Z. Y. Controlled incorporation of Ni(OH)2 nanoplates into flowerlike MoS2 nanosheets for flexible all-solid-state supercapacitors. Adv. Funct. Mater. 2014, 24, 6700–6707.

30

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

31

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

32

Shen, J. F.; He, Y. M.; Wu, J. J.; Gao, C. T.; Keyshar, K.; Zhang, X.; Yang, Y. C.; Ye, M. X.; Vajtai, R.; Lou, J. et al. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett. 2015, 15, 5449–5454.

33

Heising, J.; Kanatzidis, M. G. Exfoliated and restacked MoS2 and WS2: Ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 1999, 121, 11720–11732.

34

Joensen, P.; Crozier, E. D.; Alberding, N.; Frindt, R. F. A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy. J. Phys. C 1987, 20, 4043–4053.

35

Voiry, D.; Goswami, A.; Kappera, R.; e Silva, C. D. C. C.; Kaplan, D.; Fujita, T.; Chen, M. W.; Asefa, T.; Chhowalla, M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 2015, 7, 45–49.

36

Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

37

Xu, H. L.; Li, X. W.; Wang, G. C. Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors. J. Power Sources 2015, 294, 16–21.

38

Bai, M. H.; Liu, T. Y.; Luan, F.; Li, Y.; Liu, X. X. Electrodeposition of vanadium oxide-polyaniline composite nanowire electrodes for high energy density supercapacitors. J. Mater. Chem. A 2014, 2, 10882–10888.

39

Kim, M.; Lee, C.; Jang. J. Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv. Funct. Mater. 2014, 24, 2489–2499.

40

Han, G. Q.; Liu, Y.; Zhang, L. L.; Kan, E. J.; Zhang, S. P.; Tang, J.; Tang, W. H. MnO2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high- performance supercapacitors. Sci. Rep. 2014, 4, 4824.

41

Meng, Y. N.; Wang, K.; Zhang, Y. J.; Wei, Z. X. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv. Mater. 2013, 25, 6985–6990.

42

Yang, L. C.; Wang, S. N.; Mao, J. J.; Deng, J. W.; Gao, Q. S.; Tang, Y.; Schmidt, O. G. Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 2013, 25, 1180–1184.

43

Huang, K. -J.; Wang, L.; Liu, Y. -J.; Wang, H. -B.; Liu, Y. -M.; Wang, L. -L. Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim. Acta 2013, 109, 587–594.

44

Liu, T. Y.; Finn, L.; Yu, M. H.; Wang, H. Y.; Zhai, T.; Lu, X. H.; Tong, Y. X.; Li, Y. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett. 2014, 14, 2522–2527.

45

Ardizzone, S.; Fregonara, G.; Trasatti, S. "Inner" and "outer" active surface of RuO2 electrodes. Electrochim. Acta 1990, 35, 263–267.

46

Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. -B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

47

Shen, L. F.; Wang, J.; Xu, G. Y.; Li, H. S.; Dou, H.; Zhang, X. G. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 2015, 5, 1400977.

48

Cong, H. -P.; Ren, X. -C.; Wang, P.; Yu, S. -H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185–1191.

49

Taberna, P. L.; Simon, P.; Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J. Electrochem. Soc. 2003, 150, A292–A300.

50

El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

51

Li, L.; Raji, A. R. O.; Fei, H. L.; Yang, Y.; Samuel, E. L. G.; Tour, J. M. Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl. Mater. Interfaces 2013, 5, 6622–6627.

52

Vonlanthen, D.; Lazarev, P.; See, K. A.; Wudl, F.; Heeger, A. J. A stable polyaniline-benzoquinone-hydroquinone supercapacitor. Adv. Mater. 2014, 26, 5095–5100.

53

Giri, S.; Ghosh, D.; Das, C. K. Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Adv. Funct. Mater. 2014, 24, 1312–1324.

File
nr-9-4-951_ESM.pdf (4.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 November 2015
Revised: 16 December 2015
Accepted: 18 December 2015
Published: 01 February 2016
Issue date: April 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We are grateful for financial support from Fudan University, National Basic Research Program of China (No. 2011CB605702), National Natural Science Foundation of China (No. 51173027), The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. TP2015002) and Shanghai Basic Research Program (No. 14JC1400600). We also thank Miss Q. Yan, Dr. L. Dei, Dr. G. Qi, Dr. Y. Cui and Dr. Y. Ren at Fudan University and Miss Q. Hu at Shanghai Jiao Tong University for the help with the experiments. Dr. S. Ye and Dr. Y. Zhang at Fudan University provide some suggestions, too. I. S. would like to extend his sincere appreciation to the Deanship of Scientific Research at the King Saud University for its funding of this research through the Research Prolific Research Group, Project No PRG-1436-25.

Return