Journal Home > Volume 9 , Issue 4

To achieve better control of the formation of silver sulfide (Ag2S) nanoparticles, ultrasmall Ag nanoclusters protected by thiolate ligands (Ag44(SR)30 and Ag16(GSH)9) are used as precursors, which, via delicate chemistry, can be readily converted to monodisperse Ag2S nanoparticles with controllable sizes (4–16 nm) and switchable solvent affinity (between aqueous and organic solvents). This new synthetic protocol makes use of the atomic monodispersity and rich surface chemistry of Ag nanoclusters and a novel two-phase protocol design, which results in a well-controlled reaction environment for the formation of Ag2S nanoparticles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Converting ultrafine silver nanoclusters to monodisperse silver sulfide nanoparticles via a reversible phase transfer protocol

Show Author's information Yan Feng1,2Qiaofeng Yao2Jingguo Li2Nirmal Goswami2Jianping Xie2( )Jun Yang1( )
State Key Laboratory of Multiphase Complex SystemsInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
Department of Chemical and Biomolecular EngineeringNational University of Singapore10 Kent Ridge CrescentSingapore119260Singapore

Abstract

To achieve better control of the formation of silver sulfide (Ag2S) nanoparticles, ultrasmall Ag nanoclusters protected by thiolate ligands (Ag44(SR)30 and Ag16(GSH)9) are used as precursors, which, via delicate chemistry, can be readily converted to monodisperse Ag2S nanoparticles with controllable sizes (4–16 nm) and switchable solvent affinity (between aqueous and organic solvents). This new synthetic protocol makes use of the atomic monodispersity and rich surface chemistry of Ag nanoclusters and a novel two-phase protocol design, which results in a well-controlled reaction environment for the formation of Ag2S nanoparticles.

Keywords: silver sulfide nanoparticles, silver nanoclusters, thiolated metal nanoclusters, two-phase synthesis

References(40)

1

Lim, W. P.; Zhang, Z. H.; Low, H. Y.; Chin, W. S. Preparation of Ag2S nanocrystals of predictable shape and size. Angew. Chem., Int. Ed. 2004, 43, 5685-5689.

2

Lou, W. J.; Wang, X. B.; Chen, M.; Liu, W. M.; Hao, J. C. A simple route to synthesize size-controlled Ag2S core– shell nanocrystals, and their self-assembly. Nanotechnology 2008, 19, 225607.

3

Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470-1471.

4

Shen, S. L.; Zhang, Y. J.; Peng, L.; Du, Y. P.; Wang, Q. B. Matchstick-shaped Ag2S–ZnS heteronanostructures preserving both UV/blue and near-infrared photoluminescence. Angew. Chem., Int. Ed. 2011, 50, 7115-7118.

5

Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near- infrared window. ACS Nano 2012, 6, 3695-3702.

6

Yang, J.; Ying, J. Y. Nanocomposites of Ag2S and noble metals. Angew. Chem., Int. Ed. 2011, 50, 4637-4643.

7

Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016-4022.

8

Yang, J.; Ying, J. Y. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat. Mater. 2009, 8, 683-689.

9

Zhu, G. X.; Xu, Z. Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host. J. Am. Chem. Soc. 2011, 133, 148-157.

10

Brelle, M. C.; Zhang, J. Z.; Nguyen, L.; Mehra, R. K. Synthesis and ultrafast study of cysteine- and glutathione- capped Ag2S semiconductor colloidal nanoparticles. J. Phys. Chem. A 1999, 103, 10194-10201.

11

Yang, L.; Xing, R. M.; Shen, Q. M.; Jiang, K.; Ye, F.; Wang, J. Y.; Ren, Q. S. Fabrication of protein-conjugated silver sulfide nanorods in the bovine serum albumin solution. J. Phys. Chem. B 2006, 110, 10534-10539.

12

Mo, X.; Krebs, M. P.; Yu, S. M. Directed synthesis and assembly of nanoparticles using purple membrane. Small 2006, 2, 526-529.

13

Jin, R. C. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2, 343-362.

14

Lu, Y. Z.; Chen, W. Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594-3623.

15

Negishi, Y.; Nobusada K.; Tsukuda, T. Glutathione- protected gold clusters revisited: Bridging the gap between gold(I)−thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261-5270.

16

Zheng, J.; Nicovich P. R.; Dickson, R. M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431.

17

Chen, S. W.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez M. M.; Whetten, R. L. Gold nanoelectrodes of varied size: Transition to molecule-like charging. Science 1998, 280, 2098-2101.

18

Luo, Z. T.; Zheng, K. Y.; Xie, J. P. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. 2014, 50, 5143-5155.

19

Yuan, X.; Setyawati, M. I.; Tan, A. S.; Ong, C. N.; Leong, D. T.; Xie, J. P. Highly luminescent silver nanoclusters with tunable emissions: Cyclic reduction–decomposition synthesis and antimicrobial properties. NPG Asia Mater. 2013, 5, e39.

20

Yamazoe, S.; Koyasu K.; Tsukuda, T. Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 2014, 47, 816-824.

21

Dass, A.; Theivendran, S.; Nimmala, P. R.; Kumara, C.; Jupally, V. R.; Fortunelli, A.; Sementa, L.; Barcaro, G.; Zuo, X.; Noll, B. C. Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis. J. Am. Chem. Soc. 2015, 137, 4610-4613.

22

Yuan, X.; Luo, Z. T.; Yu, Y.; Yao, Q. F.; Xie, J. P. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. —Asian J. 2013, 8, 858-871.

23

Choi, S.; Park, S.; Yu, J. H. Ligand-assisted etching: The stability of silver nanoparticles and the generation of luminescent silver nanodots. Chem. Commun. 2014, 50, 15098-15100.

24

Jin, R. C.; Qian, H. F.; Wu, Z. K.; Zhu, Y.; Zhu, M. Z.; Mohanty, A.; Garg, N. Size focusing: A methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 2010, 1, 2903-2910.

25

Yu, Y.; Yao, Q. F.; Luo, Z. T.; Yuan, X.; Lee, J. Y.; Xie, J. P. Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. Nanoscale 2013, 5, 4606-4620.

26

Wang, S. X.; Song, Y. B.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X. M.; Chen, M.; Li, P.; Zhu, M. Z. Metal exchange method using Au25 nanoclusters as templates for alloy nanoclusters with atomic precision. J. Am. Chem. Soc. 2015, 137, 4018-4021.

27

Luo, Z. T.; Nachammai, V.; Zhang, B.; Yan, N.; Leong, D. T.; Jiang, D. -E.; Xie, J. P. Toward understanding the growth mechanism: Tracing all stable intermediate species from reduction of Au(I)–thiolate complexes to evolution of Au25 nanoclusters. J. Am. Chem. Soc. 2014, 136, 10577-10580.

28

Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Recent progress in the functionalization methods of thiolate- protected gold clusters. J. Phys. Chem. Lett. 2014, 5, 4134-4142.

29

Wang, Y.; Su, H. F.; Xu, C. F.; Li, G.; Gell, L.; Lin, S. C.; Tang, Z. C.; Häkkinen, H.; Zheng, N. F. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands. J. Am. Chem. Soc. 2015, 137, 4324-4327.

30

AbdulHalim, L. G.; Kothalawala, N.; Sinatra, L.; Dass, A.; Bakr, O. M. Neat and complete: Thiolate-ligand exchange on a silver molecular nanoparticle. J. Am. Chem. Soc. 2014, 136, 15865-15868.

31

Yao, C. H.; Chen, J. S.; Li, M. -B.; Liu, L. R.; Yang, J. L.; Wu, Z. K. Adding two active silver atoms on Au25 nanoparticle. Nano Lett. 2015, 15, 1281-1287.

32

Yuan, X.; Zhang, B.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Yan, N.; Xie, J. P. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem., Int. Ed. 2014, 53, 4623-4627.

33

Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399-402.

34

Yao, Q. F.; Yu, Y.; Yuan, X.; Zhao, D.; Xie, J. P.; Lee, J. Y. Counterion-assisted shaping of nanocluster supracrystals. Angew. Chem., Int. Ed. 2015, 54, 184-189.

35

Yao, Q. F.; Yuan, X.; Yu, Y.; Xie, J. P.; Lee, J. Y. Introducing amphiphilicity to noble metal nanoclusters via phase-transfer driven ion-pairing reaction. J. Am. Chem. Soc. 2015, 137, 2128-2132.

36

Bakr, O. M.; Amendola, V.; Aikens, C. M.; Wenseleers, W.; Li, R.; Dal Negro, L.; Schatz, G. C.; Stellacci, F. Silver nanoparticles with broad multiband linear optical absorption. Angew. Chem., Int. Ed. 2009, 48, 5921-5926.

37

Yang, H. Y.; Zhao, Y. W.; Zhang, Z. Y.; Xiong, H. M.; Yu, S. N. One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology 2013, 24, 055706.

38

Martínez-Castañón, G. A.; Sánchez-Loredo, M. G.; Dorantes, H. J.; Martínez-Mendoza, J. R.; Ortega-Zarzosa, G.; Ruiz, F. Characterization of silver sulfide nanoparticles synthesized by a simple precipitation method. Mater. Lett. 2005, 59, 529-534.

39

Ma, D. K.; Hu, X. K.; Zhou, H. Y.; Zhang, J. H.; Qian, Y. T. Shape-controlled synthesis and formation mechanism of nanoparticles-assembled Ag2S nanorods and nanotubes. J. Cryst. Growth 2007, 304, 163-168.

40

Zhao, Y. B.; Zhang, D. W.; Shi, W. F.; Wang, F. A gamma- ray irradiation reduction route to prepare rod-like Ag2S nanocrystallines at room temperature. Mater. Lett. 2007, 61, 3232-3234.

File
nr-9-4-942_ESM.pdf (810.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 October 2015
Revised: 14 December 2015
Accepted: 15 December 2015
Published: 22 January 2016
Issue date: April 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 21173226, 21376247, and 21573240), and the Ministry of Education, Singapore (No. R-279-000-409-112).

Return