Journal Home > Volume 9 , Issue 4

Low-dimensional semiconductor nanostructures have attracted much interest for applications in integrated photonic and optoelectronic devices. Band gap engineering within single semiconductor nanoribbons helps to manipulate photon behavior in two different cavities (in the width and length directions) and realize new photonic phenomena and applications. In this work, lateral composition-graded semiconductor nanoribbons were grown for the first time through an improved source-moving vapor phase route. Along the width of the nanoribbon, the material can be gradually tuned from pure CdS to a highly Se-doped CdSSe alloy with a corresponding band gap modulation from 2.42 to 1.94 eV. The achieved alloy ribbons are overall high-quality crystals, and the position-dependent band-edge photoluminescence (PL) emission had a peak wavelength continuously tuned from ~515 to ~640 nm. These ribbons can realize multi-color lasing with three groups of lasing modes centered at 519, 557, and 623 nm. It was confirmed that the red lasing was from optical resonance along the length direction, while the green and yellow lasing was from optical resonance along the width direction. These novel nanoribbon structures may be applied to many integrated photonic and optoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Lateral composition-graded semiconductor nanoribbons for multi-color nanolasers

Show Author's information Xiujuan Zhuang§Pengfei Guo§Qinglin Zhang§Huawei LiuDan LiWei HuXiaoli ZhuHong ZhouAnlian Pan( )
Key Laboratory for Micro-Nano Physics and Technology of Hunan ProvinceKey Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and electronicsHunan UniversityChangsha410082China

§ These authors contributed equally to this work.

Abstract

Low-dimensional semiconductor nanostructures have attracted much interest for applications in integrated photonic and optoelectronic devices. Band gap engineering within single semiconductor nanoribbons helps to manipulate photon behavior in two different cavities (in the width and length directions) and realize new photonic phenomena and applications. In this work, lateral composition-graded semiconductor nanoribbons were grown for the first time through an improved source-moving vapor phase route. Along the width of the nanoribbon, the material can be gradually tuned from pure CdS to a highly Se-doped CdSSe alloy with a corresponding band gap modulation from 2.42 to 1.94 eV. The achieved alloy ribbons are overall high-quality crystals, and the position-dependent band-edge photoluminescence (PL) emission had a peak wavelength continuously tuned from ~515 to ~640 nm. These ribbons can realize multi-color lasing with three groups of lasing modes centered at 519, 557, and 623 nm. It was confirmed that the red lasing was from optical resonance along the length direction, while the green and yellow lasing was from optical resonance along the width direction. These novel nanoribbon structures may be applied to many integrated photonic and optoelectronic devices.

Keywords: nanoribbon, semiconductor, composition grade, nanolaser, multi-color

References(41)

1

Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single- nanowire electrically driven lasers. Nature 2003, 421, 241–245.

2

Chu, S.; Wang, G. P.; Zhou, W. H.; Lin, Y. Q.; Chernyak, L.; Zhao, J. Z.; Kong, J. Y.; Li, L.; Ren, J. J.; Liu, J. L. Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 2011, 6, 506–510.

3

Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E. R.; Russo, R.; Yang, P. D. Room- temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

4

Yang, Z. Y.; Xu, J. Y.; Wang, P.; Zhuang, X. J.; Pan, A. L.; Tong, L. M. On-nanowire spatial band gap design for white light emission. Nano Lett. 2011, 11, 5085–5089.

5

Guo, P. F.; Zhuang, X. J.; Xu, J. Y.; Zhang, Q. L.; Hu, W.; Zhu, X. L.; Wang, X. X.; Wan, Q.; He, P. B.; Zhou, H. et al. Low-threshold nanowire laser based on composition- symmetric semiconductor nanowires. Nano Lett. 2013, 13, 1251–1256.

6

Pan, A. L.; Wang, S. Q.; Liu, R. B.; Li, C. R.; Zou, B. S. Thermal stability and lasing of CdS nanowires coated by amorphous silica. Small 2005, 1, 1058–1062.

7

Pan, A. L.; Liu, R. B.; Sun, M. H.; Ning, C. Z. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. J. Am. Chem. Soc. 2009, 131, 9502–9503.

8

Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.

9

Zhai, T. Y.; Liu, H. M.; Li, H. Q.; Fang, X. S.; Liao, M. Y.; Li, L.; Zhou, H. S.; Koide, Y.; Bando, Y.; Golberg, D. Centimeter-long V2O5 nanowires: From synthesis to field- emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 2010, 22, 2547–2552.

10

Guo, P. F.; Hu, W.; Zhang, Q. L.; Zhuang, X. J.; Zhu, X. L.; Zhou, H.; Shan, Z. P.; Xu, J. Y.; Pan, A. L. Semiconductor alloy nanoribbon lateral heterostructures for high-performance photodetectors. Adv. Mater. 2014, 26, 2844–2849.

11

Xiao, Y.; Meng, C.; Wang, P.; Ye, Y.; Yu, H. K.; Wang, S. S.; Gu, F. X.; Dai, L.; Tong, L. M. Single-nanowire single-mode laser. Nano Lett. 2011, 11, 1122–1126.

12

Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. D. Nanoribbon waveguides for subwavelength photonics integration. Science 2004, 305, 1269–1273.

13

Agarwal, R.; Barrelet, C. J.; Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 2005, 5, 917–923.

14

Hollemann, G.; Braun, B.; Dorsch, F.; Hennig, P.; Heist, P.; Krause, U.; Kutschki, U.; Voelckel, H. A. RGB lasers for laser projection displays. In Proceedings of the SPIE 3954, Projection Displays 2000: Sixth in a Series, San Jose, CA, 2000, pp 140–151.

15

Kotani, A.; Witek, M. A.; Osiri, J. K.; Wang, H.; Sinville, R.; Pincas, H.; Barany, F.; Soper, S. A. EndoV/DNA ligase mutation scanning assay using microchip capillary electrophoresis and dual-color laser-induced fluorescence detection. Anal. Methods 2012, 4, 58–64.

16

Yan, R. X.; Park, J. H.; Choi, Y.; Heo, C. J.; Yang, S. M.; Lee, L. P.; Yang, P. D. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 2012, 7, 191–196.

17

Xu, J. Y.; Zhuang, X. J.; Guo, P. F.; Huang, W. Q.; Hu, W.; Zhang, Q. L.; Wan, Q.; Zhu, X. L. Yang, Z. Y.; Tong, L. M. et al. Asymmetric light propagation in composition-graded semiconductor nanowires. Sci. Rep. 2012, 2, 820.

18

Xu, J. Y.; Ma, L.; Guo, P. F.; Zhuang, X. J.; Zhu, X. L.; Hu, W.; Duan, X. F.; Pan, A. L. Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J. Am. Chem. Soc. 2012, 134, 12394–12397.

19

Zheng, Z.; Gan, L.; Li, H. Q.; Ma, Y.; Bando, Y.; Golberg, D.; Zhai, T. Y. A fully transparent and flexible ultraviolet-visible photodetector based on controlled electrospun ZnO-CdO heterojunction nanofiber arrays. Adv. Funct. Mater. 2015, 25, 5885–5894.

20

Yuan, X. M.; Caroff, P.; Wang, F.; Guo, Y. N.; Wang, Y. D.; Jackson, H. E.; Smith, L. M.; Tan, H. H.; Jagadish, C. Antimony induced {112}A faceted triangular GaAs1−xSbx/InP core/shell nanowires and their enhanced optical quality. Adv. Funct. Mater. 2015, 25, 5300–5308.

21

Thelander, C.; Mårtensson, T.; Björk, M. T.; Ohlsson, B. J.; Larsson, M. W.; Wallenberg, L. R.; Samuelson, L. Single- electron transistors in heterostructure nanowires. Appl. Phys. Lett. 2003, 83, 2052–2054.

22

Guo, Y. B.; Tang, Q. X.; Liu, H. B.; Zhang, Y. J.; Li, Y. L.; Hu, W. P.; Wang, S.; Zhu, D. B. Light-controlled organic/ inorganic P−N junction nanowires. J. Am. Chem. Soc. 2008, 130, 9198–9199.

23

Xu, J. Y.; Zhuang, X. J.; Guo, P. F.; Zhang, Q. L.; Huang, W. Q.; Wan, Q.; Hu, W.; Wang, X. X.; Zhu, X. L.; Fan, C. Z. et al. Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires. Nano Lett. 2012, 12, 5003–5007.

24

Fan, F.; Liu, Z.; Yin, L.; Nichols, P. L.; Ning, H.; Turkdogan, S.; Ning, C. Z. Simultaneous two-color lasing in a single CdSSe heterostructure nanosheet. Semicond. Sci. Technol. 2013, 28, 065005.

25

Lu, Y. Z.; Gu, F. X.; Meng, C.; Yu, H. K.; Ma, Y. G.; Fang, W.; Tong, L. M. Multicolour laser from a single bandgap- graded CdSSe alloy nanoribbon. Opt. Express 2013, 21, 22314–22319.

26

Island, J. O.; Buscema, M.; Barawi, M.; Clamagirand, J. M.; Ares, J. R.; Sánchez, C.; Ferrer, I. J.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors. Adv. Opt. Mater. 2014, 2, 641–645.

27

Fan, F.; Turkdogan, S.; Liu, Z. C.; Shelhammer, D.; Ning, C. Z. A monolithic white laser. Nat. Nanotechnol. 2015, 10, 796–803.

28

Pan, A. L.; Yang, H.; Liu, R. B.; Yu, R. C.; Zou, B. S.; Wang, Z. L. Color-tunable photoluminescence of alloyed CdSxSe1−x nanobelts. J. Am. Chem. Soc. 2005, 127, 15692–15693.

29

Khallaf, H.; Chai, G.; Lupan, O.; Chow, L.; Park, S.; Schulte, A. Investigation of aluminium and indium in situ doping of chemical bath deposited CdS thin films. J. Phys. D 2008, 41, 185304.

30

Moore, D.; Roning, C.; Ma, C.; Wang, Z. L. Wurtzite ZnS nanosaws produced by polar surfaces. Chem. Phys. Lett. 2004, 385, 8–11.

31

Ma, C.; Ding, Y.; Moore, D.; Wang, X. D.; Wang, Z. L. Single-crystal CdSe nanosaws. J. Am. Chem. Soc. 2004, 126, 708–709.

32

Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P. X.; Hughes, W. L.; Yang, R.; Zhang, Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 2004, 14, 943–956.

33

Ding, Y; Ma, C; Wang, Z. L. Self-catalysis and phase transformation in the formation of CdSe nanosaws. Adv. Mater. 2004, 16, 1740–1743.

34

Dong, L. F.; Jiao, J.; Coulter, M.; Love, L. Catalytic growth of CdS nanobelts and nanowires on tungsten substrates. Chem. Phys. Lett. 2003, 376, 653–658.

35

Liu, W. F.; Jin, C. G.; Jia, C.; Yao, L. Z.; Cai, W. L.; Li, X. G. CdS nanobelts on Si substrate. Chem. Lett. 2004, 33, 228–229.

36

Ma, C.; Moore, D.; Ding, Y.; Li, J.; Wang, Z. L. Nanobelt and nanosaw structures of Ⅱ-VI semiconductors. Int. J. Nanotechnology 2004, 1, 431–451.

37

Gu, F. X.; Yang, Z. Y.; Yu, H. K.; Xu, J. Y.; Wang, P.; Tong, L. M.; Pan, A. L. Spatial bandgap engineering along single alloy nanowires. J. Am. Chem. Soc. 2011, 133, 2037–2039.

38

Siegman, A. E. Lasers; Oxford University Press: Oxford, 1986.

39

Li, J. B.; Meng, C.; Liu, Y.; Wu, X. Q.; Lu, Y. Z.; Ye, Y.; Dai, L.; Tong, L. M.; Liu, X.; Yang, Q. Wavelength tunable CdSe nanowire lasers based on the absorption-emission- absorption process. Adv. Mater. 2013, 25, 833–837.

40

Zimmler, M. A.; Bao, J. M.; Capasso, F.; Muller, S.; Ronning, C. Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 2008, 93, 051101.

41

Liu, X. F.; Zhang, Q.; Xiong, Q. H.; Sum, T. C. Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption. Nano Lett. 2013, 13, 1080–1085.

File
nr-9-4-933_ESM.pdf (578.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 November 2015
Accepted: 14 December 2015
Published: 26 January 2016
Issue date: April 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Nos. 11374092, 61474040, 61574054 and 61505051), the National Basic Research Program of China (No. 2012CB933703), the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, the Hunan Provincial Science and Technology Department (Nos. 2014FJ2001, 2014GK3015 and 2014TT1004).

Return