Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hollow TiO2–X porous microspheres consisted of numerous well-crystalline nanocrystals with superior structural integrity and robust hollow interior were synthesized by a facile sol-gel template-assisted approach and two-step carbonprotected calcination method, together with hydrogenation treatment. They exhibit a uniform diameter of ~470 nm with a thin porous wall shell of ~50 nm in thickness. The Brunauer-Emmett-Teller (BET) surface area and pore volume are ~19 m2/g and 0.07 cm3/g, respectively. These hollow TiO2–X porous microspheres demonstrated excellent lithium storage performance with stable capacity retention for over 300 cycles (a high capacity of 151 mAh/g can be obtained up to 300 cycles at 1 C, retaining 81.6% of the initial capacity of 185 mAh/g) and enhanced rate capability even up to 10 C (222, 192, 121, and 92.1 mAh/g at current rates of 0.5, 1, 5, and 10 C, respectively). The intrinsic increased conductivity of the hydrogenated TiO2 microspheres and their robust hollow structure beneficial for lithium ion-electron diffusion and mitigating the structural strain synergistically contribute to the remarkable improvements in their cycling stability and rate performance.
Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.
Bruce, P. G.; Scrosati, B.; Tarascon, J. -M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.
Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.
Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.
Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180.
Chen, Z. H.; Qin, Y.; Ren, Y.; Lu, W. Q.; Orendorff, C.; Roth, E. P.; Amine, K. Multi-scale study of thermal stability of lithiated graphite. Energy Environ. Sci. 2011, 4, 4023–4030.
Chen, Z. H.; Belharouak, I.; Sun, Y. -K.; Amine, K. Titanium- based anode materials for safe lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 959–969.
Zhu, G. -N.; Wang, Y. -G.; Xia, Y. -Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.
Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588–598.
Xin, L.; Liu, Y.; Li, B. J.; Zhou, X.; Shen, H.; Zhao, W. X.; Liang, C. L. Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries. Sci. Rep. 2014, 4, 4479.
Song, L. H.; Li, L.; Gao, X.; Zhao, J. X.; Lu, T.; Liu, Z. A facile synthesis of a uniform constitution of three-dimensionally ordered macroporous TiO2-carbon nanocomposites with hierarchical pores for lithium ion batteries. J. Mater. Chem. A, 2015, 3, 6862–6872.
Liu, H.; Li, W.; Shen, D. K.; Zhao, D. Y.; Wang, G. X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 2015, 137, 13161–13166.
Zeng, L. X.; Zheng, C.; Xia, L. C.; Wang, Y. X.; Wei, M. D. Ordered mesoporous TiO2-C nanocomposite as an anode material for long-term performance lithium-ion batteries. J. Mater. Chem. A, 2013, 1, 4293–4299.
Chen, J. S.; Liu, H.; Qiao, S. Z.; Lou, X. W. Carbon- supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. J. Mater. Chem. 2011, 21, 5687–5692.
Moriguchi, I.; Hidaka, R.; Yamada, H.; Kudo, T.; Murakami, H.; Nakashima, N. A mesoporous nanocomposite of TiO2 and carbon nanotubes as a high-rate Li-intercalation electrode material. Adv. Mater. 2006, 18, 69–73.
Cao, F. -F.; Guo, Y. -G.; Zheng, S. -F.; Wu, X. -L.; Jiang, L. -Y.; Bi, R. -R.; Wan, L. -J.; Maier, J. Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem. Mater. 2010, 22, 1908–1914.
Li, W.; Wang, F.; Feng, S. S.; Wang, J. X.; Sun, Z. K.; Li, B.; Li, Y. H.; Yang, J. P.; Elzatahry, A. A.; Xia, Y. Y. et al. Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. J. Am. Chem. Soc. 2013, 135, 18300–18303.
Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L. L.; Cheng, H. -M. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template- free self-assembly. Adv. Funct. Mater. 2011, 21, 1717–1722.
Yang, S. B.; Feng, X. L.; Müllen, K. Sandwich-like, graphene- based titania nanosheets with high surface area for fast lithium storage. Adv. Mater. 2011, 23, 3575–3579.
Wang, D. H.; Choi, D.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G. et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914.
Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.
Chen, X. B.; Liu, L.; Huang, F. Q. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.
Liang, Z.; Zheng, G. Y.; Li, W. Y.; Seh, Z. W.; Yao, H. B.; Yan, K.; Kong, D. S.; Cui, Y. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 2014, 8, 5249–5256.
Jeong, G.; Kim, J. -G.; Park, M. -S.; Seo, M.; Hwang, S. M.; Kim, Y. -U.; Kim, Y. -J.; Kim, J. H.; Dou, S. X. Core–shell structured silicon nanoparticles@TiO2−x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano 2014, 8, 2977–2985.
Wang, J.; Shen, L. F.; Nie, P.; Xu, G. Y.; Ding, B.; Fang, S.; Dou, H.; Zhang, X. G. Synthesis of hydrogenated TiO2- reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. J. Mater. Chem. A, 2014, 2, 9150–9155.
Myung, S. -T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S. -J.; Sun, Y. -K.; Scrosati, B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 2013, 6, 2609–2614.
Li, G. C.; Zhang, Z. H.; Peng, H. R.; Chen, K. Z. Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Adv. 2013, 3, 11507–11510.
Yan, Y.; Hao, B.; Wang, D.; Chen, G.; Markweg, E.; Albrecht, A.; Schaaf, P. Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. J. Mater. Chem. A, 2013, 1, 14507–14513.
Xia, T.; Zhang, W.; Li, W. J.; Oyler, N. A.; Liu, G.; Chen, X. B. Hydrogenated surface disorder enhances lithium ion battery performance. Nano Energy 2013, 2, 826–835.
Xia, T.; Chen, X. B. Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. A, 2013, 1, 2983–2989.
Lu, Z. G.; Yip, C. -T.; Wang, L. P.; Huang, H. T.; Zhou, L. M. Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem 2012, 77, 991–1000.
Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.
Shin, J. -Y.; Joo, J. H.; Samuelis, D.; Maier, J. Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 2012, 24, 543–551.
Tian, Q. H.; Tian, Y.; Zhang, Z. X.; Qiao, C. S.; Yang, L.; Hirano, S. -I. Facile template-free preparation of hierarchical TiO2 hollow microspheres assembled by nanocrystals and their superior cycling performance as anode materials for lithium-ion batteries. J. Mater. Chem. A, 2015, 3, 10829– 10836.
Gao, X. H.; Li, G. R.; Xu, Y. Y.; Hong, Z. L.; Liang, C. D.; Lin, Z. TiO2 microboxes with controlled internal porosity for high-performance lithium storage. Angew. Chem., Int. Ed. 2015, 54, 14331–14335.
Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Wei, J. Q.; Le Tam, H.; Chandran, B. K.; Dong, Z. L.; Chen, Z.; Chen, X. D. Mechanical force-driven growth of elongated bending TiO2- based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater. 2014, 26, 6111–6118.
Zhang, G. Q.; Wu, H. B.; Song, T.; Paik, U.; Lou, X. W. TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 12590–12593.
Xiao, L.; Cao, M. L.; Mei, D. D.; Guo, Y. L.; Yao, L. F.; Qu, D. Y.; Deng, B. H. Preparation and electrochemical lithium storage features of TiO2 hollow spheres. J. Power Sources 2013, 238, 197–202.
Wang, Z. Y.; Lou, X. W. TiO2 nanocages: Fast synthesis, interior functionalization and improved lithium storage properties. Adv. Mater. 2012, 24, 4124–4129.
Ming, J.; Wu, Y. Q.; Nagarajan, S.; Lee, D. -J.; Sun, Y. -K.; Zhao, F. Y. Fine control of titania deposition to prepare C@TiO2 composites and TiO2 hollow particles for photocatalysis and lithium-ion battery applications. J. Mater. Chem. 2012, 22, 22135–22141.
Wang, J. P.; Bai, Y.; Wu, M. Y.; Yin, J.; Zhang, W. F. Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries. J. Power Sources 2009, 191, 614–618.
Wang, Y.; Su, X. W.; Lu, S. Shape-controlled synthesis of TiO2 hollow structures and their application in lithium batteries. J. Mater. Chem. 2012, 22, 1969–1976.
Yu, X. -Y.; Wu, H. B.; Yu, L.; Ma, F. -X.; Lou, X. W. Rutile TiO2 submicroboxes with superior lithium storage properties. Angew. Chem., Int. Ed. 2015, 54, 4001–4004.
Hu, H.; Yu, L.; Gao, X. H.; Lin, Z.; Lou, X. W. Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage. Energy Environ. Sci. 2015, 8, 1480–1483.
Liu, J.; Qiao, S. Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D. Y.; Lu, G. Q. Extension of the stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem., Int. Ed. 2011, 50, 5947–5951.
Li, W.; Yang, J. P.; Wu, Z. X.; Wang, J. X.; Li, B.; Feng, S. S.; Deng, Y. H.; Zhang, F.; Zhao, D. Y. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core–shell structures. J. Am. Chem. Soc. 2012, 134, 11864–11867.
Li, W.; Liu, M. B.; Feng, S. S.; Li, X. M.; Wang, J. X.; Shen, D. K.; Li, Y. H.; Sun, Z. K.; Elzatahry, A. A.; Lu, H. J. et al. Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides. Mater. Horiz. 2014, 1, 439–445.
Wang, C.; Chen, J. C.; Zhou, X. R.; Li, W.; Liu, Y.; Yue, Q.; Xue, Z. T.; Li, Y. H.; Elzatahry, A. A.; Deng, Y. H. et al. Magnetic yolk–shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Res. 2015, 8, 238–245.
Joo, J. B.; Zhang, Q.; Lee, I.; Dahl, M.; Zaera, F.; Yin, Y. D. Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Adv. Funct. Mater. 2012, 22, 166–174.
Zhang, J. Y.; Deng, Y. H.; Gu, D.; Wang, S. T.; She, L.; Che, R. C.; Wang, Z. -S.; Tu, B.; Xie, S. H.; Zhao, D. Y. Ligand-assisted assembly approach to synthesize large-pore ordered mesoporous titania with thermally stable and crystalline framework. Adv. Energy Mater. 2011, 1, 241–248.
Lee, J.; Orilall, M. C.; Warren, S. C.; Kamperman, M.; DiSalvo, F. J.; Wiesner, U. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 2008, 7, 222–228.
Liu, H. Y.; Joo, J. B.; Dahl, M.; Fu, L. S.; Zeng, Z. Z.; Yin, Y. D. Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity. Energy Environ. Sci. 2015, 8, 286–296.
Kim, G.; Jo, C.; Kim, W.; Chun, J.; Yoon, S.; Lee, J.; Choi, W. TiO2 nanodisks designed for Li-ion batteries: A novel strategy for obtaining an ultrathin and high surface area anode material at the ice interface. Energy Environ. Sci. 2013, 6, 2932–2938.