Journal Home > Volume 9 , Issue 3

Silicon carbide (SiC) has been considered a promising metal-free photocatalyst due to its unique photoelectrical properties and thermal/chemical stability. However, its performance suffers from the fast recombination of charge carriers. Herein, we report mesoporous SiC nanofibers with in situ embedded graphitic carbon (SiC NFs-Cx) synthesized via a one-step carbothermal reduction between electrospun carbon nanofibers and Si powders. In the absence of a noble metal co-catalyst, the hydrogen evolution efficiency of SiC NFs-Cx is significantly improved under both simulated solar light (180.2 μmol·g–1·h–1) and visible light irradiation (31.0 μmol·g–1·h–1) in high-pH solution. The efficient simultaneous separation of charge carriers plays a critical role in the high photocatalytic activity. The embedded carbon can swiftly transfer the photogenerated electrons and improve light absorption, whereas the additional hydroxyl anions (OH) in highpH solution can accelerate the trapping of holes. Our results demonstrate that the production of SiC NFs-Cx, which contains exclusively earth-abundant elements, scaled up, and is environmentally friendly, has great potential for practical applications. This work may provide a new pathway for designing stable, lowcost, high efficiency, and co-catalyst-free photocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production

Show Author's information Bing Wang1Yingde Wang1( )Yongpeng Lei2( )Nan Wu1Yanzi Gou1Cheng Han1Song Xie1Dong Fang3
Science and Technology on Advanced Ceramic Fiber and Composites LaboratoryNational University of Defense TechnologyChangsha410073China
College of Basic EducationNational University of Defense TechnologyChangsha410073China
College of Materials Science and EngineeringWuhan Textile UniversityWuhan430074China

Abstract

Silicon carbide (SiC) has been considered a promising metal-free photocatalyst due to its unique photoelectrical properties and thermal/chemical stability. However, its performance suffers from the fast recombination of charge carriers. Herein, we report mesoporous SiC nanofibers with in situ embedded graphitic carbon (SiC NFs-Cx) synthesized via a one-step carbothermal reduction between electrospun carbon nanofibers and Si powders. In the absence of a noble metal co-catalyst, the hydrogen evolution efficiency of SiC NFs-Cx is significantly improved under both simulated solar light (180.2 μmol·g–1·h–1) and visible light irradiation (31.0 μmol·g–1·h–1) in high-pH solution. The efficient simultaneous separation of charge carriers plays a critical role in the high photocatalytic activity. The embedded carbon can swiftly transfer the photogenerated electrons and improve light absorption, whereas the additional hydroxyl anions (OH) in highpH solution can accelerate the trapping of holes. Our results demonstrate that the production of SiC NFs-Cx, which contains exclusively earth-abundant elements, scaled up, and is environmentally friendly, has great potential for practical applications. This work may provide a new pathway for designing stable, lowcost, high efficiency, and co-catalyst-free photocatalysts.

Keywords: carbon, photocatalyst, silicon carbide, co-catalyst free, hydrogen production

References(55)

1

Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätze, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593-1596.

2

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor- based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.

3

Ran, J.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth- abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787-7812.

4

Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718-1728.

5

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

6

Xie, Y. J.; Zhang, X.; Ma, P. J.; Wu, Z. J.; Piao, L. Y. Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities. Nano Res. 2015, 8, 2092-2101.

7

Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121-14127.

8

Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175-183.

9

He, C. Y.; Wu, X. L.; Shen, J. C.; Chu, P. K. High-efficiency electrochemical hydrogen evolution based on surface autocatalytic effect of ultrathin 3C-SiC nanocrystals. Nano Lett. 2012, 12, 1545-1548.

10

Liu, J. K.; Wen, S. H.; Hou, Y.; Zuo, F.; Beran, G. J. O.; Feng, P. Y. Boron carbides as efficient, metal-free, visible- light-responsive photocatalysts. Angew. Chem., Int. Ed. 2013, 52, 3241-3245.

11

Ishikawa, T.; Yamaoka, H.; Harada, Y.; Fujii, T.; Nagasawa, T. A general process for in situ formation of functional surface layers on ceramics. Nature 2002, 416, 64-67.

12

Masson, R.; Keller, V.; Keller, N. β-SiC alveolar foams as a structured photocatalytic support for the gas phase photocatalytic degradation of methylethylketone. Appl. Catal. B: Environ. 2015, 170-171, 301-311.

13

Wang, H.; Yu, J. S.; Li, X. D.; Kim, D. P. Inorganic polymer-derived hollow SiC and filled SiCN sphere assemblies from a 3DOM carbon template. Chem. Commun. 2004, 2352-2353.

14

Xi, G. C.; Liu, Y. K.; Liu, X. Y.; Wang, X. Q.; Qian, Y. T. Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures. J. Phys. Chem. B 2006, 110, 14172-14178.

15

Hao, J. Y.; Wang, Y. Y.; Tong, X. L.; Jin, G. Q.; Guo, X. Y. SiC nanomaterials with different morphologies for photocatalytic hydrogen production under visible light irradiation. Catal. Today 2013, 212, 220-224.

16

Zhou, W. M.; Yan, L. J.; Wang, Y.; Zhang, Y. F. SiC nanowires: A photocatalytic nanomaterial. Appl. Phys. Lett. 2006, 89, 013105.

17

Wang, Y. W.; Guo, X. N.; Dong, L. L.; Jin, G. Q.; Wang, Y. Y.; Guo, X. Y. Enhanced photocatalytic performance of chemically bonded SiC-graphene composites for visible- light-driven overall water splitting. Int. J. Hydrogen Energy 2013, 38, 12733-12738.

18

Wang, M. M.; Chen, J. J.; Liao, X.; Liu, Z. X.; Zhang, J. D.; Gao, L.; Li, Y. Highly efficient photocatalytic hydrogen production of platinum nanoparticle-decorated SiC nanowires under simulated sunlight irradiation. Int. J. Hydrogen Energy 2014, 39, 14581-14587.

19

Peng, Y.; Guo, Z. N.; Yang, J. J.; Wang, D.; Yuan, W. X. Enhanced photocatalytic H2 evolution over micro-SiC by coupling with CdS under visible light irradiation. J. Mater. Chem. A 2014, 2, 6296-6300.

20

Zhou, X. F.; Liu, Y. J.; Li, X.; Gao, Q. Z.; Liu, X. T.; Fang, Y. P. Topological morphology conversion towards SnO2/SiC hollow sphere nanochains with efficient photocatalytic hydrogen evolution. Chem. Commun. 2014, 1070-1073.

21

Hao, J. Y.; Wang, Y. Y.; Tong, X. L.; Jin, G. Q.; Guo, X. Y. Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation. Int. J. Hydrogen Energy 2012, 37, 15038-15044.

22

Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234-5244.

23

Park, Y.; Kim, W.; Park, H.; Tachikawa, T.; Majima, T.; Choi, W. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl. Catal. B: Environ. 2009, 91, 355-361.

24

Wu, N.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Han, C. Flexible N-doped TiO2/C ultrafine fiber mat and its photocatalytic activity under simulated sunlight. Appl. Surf. Sci. 2014, 319, 136-142.

25

Han, S. C.; Hu, L. F.; Liang, Z. Q.; Wageh, S.; Al-Ghamdi, A. A.; Chen, Y. S.; Fang, X. S. One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv. Funct. Mater. 2014, 24, 5719-5727.

26

Yang, J. J.; Zeng, X. P.; Chen, L. J.; Yuan, W. X. Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light. Appl. Phys. Lett. 2013, 102, 083101.

27

Yang, T.; Chang, X. W.; Chen, J. H.; Chou, K. C.; Hou, X. M. B-doped 3C-SiC nanowires with a finned microstructure for efficient visible light-driven photocatalytic hydrogen production. Nanoscale 2015, 7, 8955-8961.

28

Gao, Y. T.; Wang, Y. Q.; Wang, Y. X. Photocatalytic hydrogen evolution from water on SiC under visible light irradiation. React. Kinet. Catal. Lett. 2007, 91, 13-19.

29

Zhang, Y. L.; Xia, T.; Wallenmeyer, P.; Harris, C. X.; Peterson, A. A.; Corsiglia, G. A.; Murowchick, J.; Chen, X. B. Photocatalytic hydrogen generation from pure water using silicon carbide nanoparticles. Energy Technol. 2014, 2, 183-187.

30

Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrović, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013-1018.

31

Ye, H.; Titchenal N.; Gogotsi. Y.; Ko, F. SiC nanowires synthesized from electrospun nanofiber templates. Adv. Mater. 2005, 17, 1531-1535.

32

Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199-1209.

33

Ma, J.; Li, G. Y.; Chu, Z. Y.; Li, X. D.; Li, Y. H.; Hu, T. J. Microstructure and growth mechanism of multi-layer graphene standing on polycrystalline SiC microspheres. Carbon 2014, 69, 634-637.

34

Zhang, Y.; Zang, J. B.; Dong, L.; Cheng, X. Z.; Zhao, Y. L.; Wang, Y. H. A Ti-coated nano-SiC supported platinum electrocatalyst for improved activity and durability in direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 10146- 10153.

35

Wang, H.; Zhou, Q. J.; Jian, K.; Shao, C. W.; Zhu, Y. H. Preparation of ordered porous ceramic joint on C/SiC composites and its joining technique. J. Inorg. Mater. 2013, 28, 763-768.

36

Wang, B.; Wang, Y. D.; Lei, Y. P.; Wu, N.; Gou, Y. Z.; Han, C.; Fang, D. Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. J. Mater. Chem. A 2014, 2, 20873-20881.

37

Shi, Y. F.; Zhang, F.; Hu Y. S.; Sun, X. H.; Zhang, Y. C.; Lee, H. I.; Chen, L. Q.; Stucky, G. D. Low-temperature pseudomorphic transformation of ordered hierarchical macro- mesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction. J. Am. Chem. Soc. 2010, 132, 5552-5553.

38

Rowland, C. E.; Hannah, D. C.; Demortière, A.; Yang, J. H.; Cook, R. E.; Prakapenka, V. B.; Kortshagen, U.; Schaller, R. D. Silicon nanocrystals at elevated temperatures: Retention of photoluminescence and diamond silicon to β-silicon carbide phase transition. ACS Nano 2014, 8, 9219-9223.

39

Wen, G. Z.; Zeng, X. B.; Liao, W. G.; Cao, C. C. Crystallization mechanism of silicon quantum dots upon thermal annealing of hydrogenated amorphous Si-rich silicon carbide films. Thin Solid Films 2014, 552, 18-23.

40

Yin, L. W.; Bando, Y.; Zhu, Y. C.; Li, Y. B. Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (α-Si3N4) single-crystalline nanobelts. Appl. Phys. Lett. 2003, 83, 3584-3586.

41

Zhang, L. G.; Jin, H.; Yang, W. Y.; Xie, Z. P.; Miao, H. Z.; An, L. Optical properties of single-crystalline α-Si3N4 nanobelts. Appl. Phys. Lett. 2005, 86, 061908.

42

Cuong, D. V.; Truong-Phuoc, L.; Tran-Thanh, T.; Nhut, J. M.; Nguyen-Dinh, L.; Janowska, I.; Begin, D.; Pham-Huu, C. Nitrogen-doped carbon nanotubes decorated silicon carbide as a metal-free catalyst for partial oxidation of H2S. Appl. Catal. A: Gen. 2014, 482, 397-406.

43

Wu, X. L.; Xiong, S. J.; Zhu, J.; Wang, J.; Shen, J. C.; Chu, P. K. Identification of surface structures on 3C-SiC nanocrystals with hydrogen and hydroxyl bonding by photoluminescence. Nano Lett. 2009, 9, 4053-4060.

44

Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. 3D interconnected networks constructed by in situ growth of N-doped graphene/carbon nanotubes on cobalt-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. , in press, DOI10.1007/s12274-015-0911-y.

45

Cheng, Y. L.; Zhang, J. F.; Zhang, Y. F.; Chen, X. L.; Wang, Y.; Ma, H. M.; Cao, X. Q. Preparation of hollow carbon and silicon carbide fibers with different cross-sections by using electrospun fibers as templates. Eur. J. Inorg. Chem. 2009, 2009, 4248-4254.

46

Cheng, G. M.; Chang, T. H.; Qin, Q. Q.; Huang, H. C.; Zhu, Y. Mechanical properties of silicon carbide nanowires: Effect of size-dependent defect density. Nano Lett. 2014, 14, 754-758.

47

Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603-619.

48

Liu, J. M.; Zhang, Q. C.; Yang, J. C.; Ma, H. Y.; Tade, M. O.; Wang, S. B.; Liu, J. Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis. Chem. Commun. 2014, 50, 13971-13974.

49

Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878- 10884.

50

Sun, Z. H.; Guo, J. J.; Zhu, S. M.; Mao, L.; Ma, J.; Zhang, D. A high-performance Bi2WO6-graphene photocatalyst for visible light-induced H2 and O2 generation. Nanoscale 2014, 6, 2186-2193.

51

Seong, H. K.; Choi, H. J.; Lee, S. K.; Lee, J. I.; Choi, D. J. Optical and electrical transport properties in silicon carbide nanowires. Appl. Phys. Lett. 2004, 85, 1256-1258.

52

Li, Z. J.; Zhao, J.; Zhang, M.; Xia, J. Y.; Meng, A. L. SiC nanowires with thickness-controlled SiO2 shells: Fabrication, mechanism, reaction kinetics and photoluminescence properties. Nano Res. 2014, 7, 462-472.

53

Yu, J. G.; Dai, G. P.; Huang, B. B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J. Phys. Chem. C 2009, 113, 16394-16401.

54

Jiao, Z. F.; Guo, X. N.; Zhai, Z. Y.; Jin, G. Q.; Wang, X. M.; Guo, X. Y. The enhanced catalytic performance of Pd/SiC for the hydrogenation of furan derivatives at ambient temperature under visible light irradiation. Catal. Sci. Technol. 2014, 4, 2494-2498.

55

Robinson, V. S.; Fisher, T. S.; Michel, J. A.; Lukehart, C. M. Work function reduction of graphitic nanofibers by potassium intercalation. App. Phys. Lett. 2005, 87, 061501.

File
nr-9-3-886_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 September 2015
Revised: 12 November 2015
Accepted: 07 December 2015
Published: 14 January 2016
Issue date: March 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (Nos. 51173202 and 51203182), Hunan Provincial Natural Science Foundation of China (No. 13JJ4009), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) (No. 2014-KF-10), the State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology (No. G201501) and Research Project of National University of Defense Technology (No. JC13-01-05). This work was also supported by Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and Aid Program for Innovative Group of National University of Defense Technology.

Return