Journal Home > Volume 9 , Issue 3

This study reports the controllable surface roughening of Au–Ag alloy nanoplates via the galvanic replacement reaction between single-crystalline triangular Ag nanoplates and HAuCl4 in an aqueous medium. With a combination of experimental evidence and finite element method (FEM) simulations, improved electromagnetic field (E-field) enhancement around the surface-roughened Au–Ag nanoplates and tunable light absorption in the near-infrared (NIR) region (~800–1, 400 nm) are achieved by the synergistic effects of the localized surface plasmon resonance (LSPR) from the maintained triangular shape, the controllable Au–Ag alloy composition, and the increased surface roughness. The NIR light extinction enables an active photothermal effect as well as a high photothermal conversion efficiency (78.5%). The well-maintained triangular shape, surface-roughened evolutions of both micro- and nanostructures, and tunable NIR surface plasmon resonance effect enable potential applications of the Au–Ag alloy nanoplates in surface-enhanced Raman spectroscopic detection of biomolecules through 785-nm laser excitation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Surface micro/nanostructure evolution of Au–Ag alloy nanoplates: Synthesis, simulation, plasmonic photothermal and surface-enhanced Raman scattering applications

Show Author's information Hongmei Qian1Meng Xu1Xiaowei Li2Muwei Ji1Lei Cheng1Anwer Shoaib1Jiajia Liu1Lan Jiang2Hesun Zhu1Jiatao Zhang1( )
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081China
Laser Micro/Nano-Fabrication LaboratorySchool of Mechanical EngineeringBeijing Institute of TechnologyBeijing100081China

Abstract

This study reports the controllable surface roughening of Au–Ag alloy nanoplates via the galvanic replacement reaction between single-crystalline triangular Ag nanoplates and HAuCl4 in an aqueous medium. With a combination of experimental evidence and finite element method (FEM) simulations, improved electromagnetic field (E-field) enhancement around the surface-roughened Au–Ag nanoplates and tunable light absorption in the near-infrared (NIR) region (~800–1, 400 nm) are achieved by the synergistic effects of the localized surface plasmon resonance (LSPR) from the maintained triangular shape, the controllable Au–Ag alloy composition, and the increased surface roughness. The NIR light extinction enables an active photothermal effect as well as a high photothermal conversion efficiency (78.5%). The well-maintained triangular shape, surface-roughened evolutions of both micro- and nanostructures, and tunable NIR surface plasmon resonance effect enable potential applications of the Au–Ag alloy nanoplates in surface-enhanced Raman spectroscopic detection of biomolecules through 785-nm laser excitation.

Keywords: photothermal, Au–Ag alloy nanoplates, surface roughening, finite element method (FEM) simulation, surface enhanced Raman scattering (SERS)

References(49)

1

Yu, R.; Lin, Q. F.; Leung, S. F.; Fan, Z. Y. Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 2012, 1, 57–72.

2

Helt, J. M.; Drain, C. M.; Bazzan, G. Stamping patterns of insulated gold nanowires with self-organized ultrathin polymer films. J. Am. Chem. Soc. 2006, 128, 9371–9377.

3

Choi, B. S.; Lee, Y. W.; Kang, S. W.; Hong, J. W.; Kim, J.; Park, I.; Han, S. W. Multimetallic alloy nanotubes with nanoporous framework. ACS Nano 2012, 6, 5659–5667.

4

Luechinger, N. A.; Walt, S. G.; Stark, W. J. Printable nanoporous silver membranes. Chem. Mater. 2010, 22, 4980–4986.

5

Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011, 111, 3736–3827.

6

Haynes, C. L.; Yonzon, C. R.; Zhang, X. Y.; Van Duyne, R. P. Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 2005, 36, 471–484.

7

Zhang, Q.; Li, N.; Goebl, J.; Lu, Z. D.; Yin, Y. D. A systematic study of the synthesis of silver nanoplates: Is citrate a "magic" reagent? J. Am. Chem. Soc. 2011, 133, 18931–18939.

8

Sun, Y. G.; Xia, Y. N. Triangular nanoplates of silver: Synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv. Mater. 2003, 15, 695–699.

9

Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201–7206.

10

Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J.; Liz-Marzán, L. M. Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 2014, 8, 5833–5842.

11

O'Brien, M. N.; Jones, M. R.; Kohlstedt, K. L.; Schatz, G. C.; Mirkin, C. A. Uniform circular disks with synthetically tailorable diameters: Two-dimensional nanoparticles for plasmonics. Nano Lett. 2015, 15, 1012–1017.

12

Millstone, J. E.; Hurst, S. J.; Métraux, G. S.; Cutler, J. I.; Mirkin, C. A. Colloidal gold and silver triangular nanoprisms. Small 2009, 5, 646–664.

13

Zhang, J. T.; Li, X. L.; Sun, X. M.; Li, Y. D. Surface enhanced Raman scattering effects of silver colloids with different shapes. J. Phys. Chem. B 2005, 109, 12544–12548.

14

Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.

15

Karvianto; Chow, G. M. Size-dependent transformation from Ag templates to Au–Ag nanoshells via galvanic replacement reaction in organic medium. J. Nanopart. Res. 2012, 14, 1186.

16

Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 2010, 132, 268–274.

17

Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.

18

Hong, X.; Wang, D. S.; Cai, S. F.; Rong, H. P.; Li, Y. D. Single-crystalline octahedral Au–Ag nanoframes. J. Am. Chem. Soc. 2012, 134, 18165–18168.

19

Au, L.; Chen, Y.; Zhou, F.; Camargo, P. H. C.; Lim, B. K.; Li, Z. Y.; Ginger, D. S.; Xia, Y. N. Synthesis and optical properties of cubic gold nanoframes. Nano Res. 2008, 1, 441–449.

20

Kleinman, S. L.; Frontiera, R. R.; Henry, A. I.; Dieringer, J. A.; Van Duyne, R. P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 2013, 15, 21–36.

21

Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 2002, 106, 9463–9483.

22

Langille, M. R.; Personick, M. L.; Mirkin, C. A. Plasmon- mediated syntheses of metallic nanostructures. Angew. Chem. , Int. Ed. 2013, 52, 13910–13940.

23

Beier, H. T.; Cowan, C. B.; Chou, I. H.; Pallikal, J.; Henry, J. E.; Benford, M. E.; Jackson, J. B.; Good, T. A.; Coté, G. L. Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells. Plasmonics 2007, 2, 55–64.

24

Lu, G.; Li, H.; Wu, S. X.; Chen, P.; Zhang, H. High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. Nanoscale 2012, 4, 860–863.

25

Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

26

Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.

27

Liu, M. Z.; Leng, M.; Yu, C.; Wang, X.; Wang, C. Selective synthesis of hexagonal Ag nanoplates in a solution-phase chemical reduction process. Nano Res. 2010, 3, 843–851.

28

Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574–580.

29

Zhang, Q.; Hu, Y. X.; Guo, S. R.; Goebl, J.; Yin, Y. D. Seeded growth of uniform Ag nanoplates with high aspect ratio and widely tunable surface plasmon bands. Nano Lett. 2010, 10, 5037–5042.

30

Aherne, D.; Gara, M.; Kelly, J. M.; Gun'ko, Y. K. From Ag nanoprisms to triangular AuAg nanoboxes. Adv. Funct. Mater. 2010, 20, 1329–1338.

31

Si, G. L.; Ma, Z. F.; Li, K.; Shi, W. T. Triangular Au–Ag nanoframes with tunable surface plasmon resonance signal from visible to near-infrared region. Plasmonics 2011, 6, 241–244.

32

Wang, W. S.; Dahl, M.; Yin, Y. D. Hollow nanocrystals through the nanoscale Kirkendall effect. Chem. Mater. 2013, 25, 1179–1189.

33

Panfilova, E.; Shirokov, A.; Khlebtsov, B.; Matora, L.; Khlebtsov, N. Multiplexed dot immunoassay using Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages. Nano Res. 2012, 5, 124–134.

34

Fang, Z. C.; Wang, Y. C.; Liu, C. X.; Chen, S.; Sang, W.; Wang, C.; Zeng, J. Rational design of metal nanoframes for catalysis and plasmonics. Small 2015, 11, 2593–2605.

35

Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.

36

Zhao, Y.; Li, X. Y.; Du, Y. X.; Chen, G. X.; Qu, Y.; Jiang, J.; Zhu, Y. W. Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: Toward highly sensitive SERS substrates. Nanoscale 2014, 6, 11112–11120.

37

Shahjamali, M. M.; Bosman, M.; Cao, S. W.; Huang, X.; Cao, X. H.; Zhang, H.; Pramana, S. S.; Xue, C. Surfactant- free sub-2 nm ultrathin triangular gold nanoframes. Small 2013, 9, 2880–2886.

38

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

39

Khatua, S.; Paulo, P. M. R.; Yuan, H. F.; Gupta, A.; Zijlstra, P.; Orrit, M. Resonant plasmonic enhancement of single- molecule fluorescence by individual gold nanorods. ACS Nano 2014, 8, 4440–4449.

40

Rycenga, M.; Wang, Z. P.; Gordon, E.; Cobley, C. M.; Schwartz, A. G.; Lo, C. S.; Xia, Y. N. Probing the photothermal effect of gold-based nanocages with surface-enhanced Raman scattering (SERS). Angew. Chem., Int. Ed. 2009, 48, 9924–9927.

41

Huang, X. Q.; Tang, S. H.; Liu, B. J.; Ren, B.; Zheng, N. F. Enhancing the photothermal stability of plasmonic metal nanoplates by a core–shell architecture. Adv. Mater. 2011, 23, 3420–3425.

42

Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

43

Liu, Z.; Cheng, L.; Zhang, L.; Yang, Z. B.; Liu, Z.; Fang, J. X. Sub-100 nm hollow Au–Ag alloy urchin-shaped nanostructure with ultrahigh density of nanotips for photothermal cancer therapy. Biomaterials 2014, 35, 4099–4107.

44

Fasciani, C.; Silvero, M. J.; Anghel, M. A.; Argüello, G. A.; Becerra, M. C.; Scaiano, J. C. Aspartame-stabilized gold– silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability. J. Am. Chem. Soc. 2014, 136, 17394–17397.

45

Naujok, R. R.; Duevel, R. V.; Corn, R. M. Fluorescence and Fourier transform surface-enhanced Raman scattering measurements of methylene blue adsorbed onto a sulfur- modified gold electrode. Langmuir 1993, 9, 1771–1774.

46

Gao, C. B.; Hu, Y. X.; Wang, M. S.; Chi, M. F.; Yin, Y. D. Fully alloyed Ag/Au nanospheres: Combining the plasmonic property of Ag with the stability of Au. J. Am. Chem. Soc. 2014, 136, 7474−7479.

47

Liu, Z.; Yang, Z. B.; Peng, B.; Cao, C.; Zhang, C.; You, H. J.; Xiong, Q. H.; Li, Z. Y.; Fang, J. X. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au–Ag alloy nanourchins. Adv. Mater. 2014, 26, 2431–2439.

48

Liu, L.; Niu, L.; Xu, M.; Han, Q. S.; Duan, H. Y.; Dong, M. D.; Besenbacher, F.; Wang, C.; Yang, Y. L. Molecular tethering effect of C-terminus of amyloid peptide Aβ42. ACS Nano 2014, 8, 9503–9510.

49

Chou, I. H.; Benford, M.; Beier, H. T.; Coté, G. L.; Wang, M.; Jing, N.; Kameoka, J.; Good, T. A. Nanofluidic biosensing for β-amyloid detection using surface enhanced Raman spectroscopy. Nano Lett. 2008, 8, 1729–1735.

File
nr-9-3-876_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 March 2015
Revised: 02 December 2015
Accepted: 06 December 2015
Published: 14 January 2016
Issue date: March 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 91323301, 21322105, and 51372025), the Research Fund for the Doctoral Program of Higher Education of China (No. 2011101120016) and Program for New Century Excellent Talents in University (No. NCET-11-0793). The authors would like to thank Prof. Chen Wang and Prof. Yanjun Guo of National Center for Nanoscience and Technology, China for AFM and SERS measurements and helpful discussions, respectively; Dr. Haiwei Li for help on BET tests and helpful discussions.

Return