Journal Home > Volume 9 , Issue 3

Bulk PbTe and alloy compounds thereof are well-known thermoelectric materials for electric power generation. Among these alloys, PbSnTe hosts unique topological surface states that may have improved thermoelectric properties. Here we report on the vapor-transport growth and thermoelectric study of high-quality single-crystalline PbTe and PbSnTe nanowires. The nanowires were grown along the < 001 > direction with dominant {100} facets; the chemical compositions of the wires depend strongly on the substrate position in the growth reactor. We measured the thermopower and electrical and thermal conductivities of individual nanowires to determine the thermoelectric figure of merit ZT. Compared to bulk samples, the PbSnTe nanowires showed both improved thermopower and suppressed thermal conductivity, enhancing the ZTs to ~0.018 and ~0.035 at room temperature. The enhanced thermopower may result from the unique topological surface states; the suppression of thermal conductivity may relate to increased phonon-surface scattering. Compared to PbTe nanowires, the PbSnTe wires have lower thermopower but significantly higher electrical conductivities. This study highlights nanostructuring in combination with alloying as an important approach to enhancing the figure of merit ZT of thermoelectric materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced thermoelectric properties of topological crystalline insulator PbSnTe nanowires grown by vapor transport

Show Author's information Enzhi Xu1Zhen Li1Jaime Avilés Acosta1Nan Li2Brian Swartzentruber3ShiJian Zheng2Nikolai Sinitsyn4Han Htoon2Jian Wang5Shixiong Zhang1( )
Department of PhysicsIndiana UniversityBloomingtonIndiana47405USA
Center for Integrated NanotechnologiesMaterialsPhysics and Applications DivisionLos Alamos National LaboratoryLos AlamosNew Mexico87545USA
Center for Integrated NanotechnologiesSandia National LaboratoriesAlbuquerqueNew Mexico87185USA
Theoretical DivisionLos Alamos National LaboratoryLos AlamosNew Mexico87545USA
MST-8Los Alamos National LaboratoryLos AlamosNew Mexico87545USA

Abstract

Bulk PbTe and alloy compounds thereof are well-known thermoelectric materials for electric power generation. Among these alloys, PbSnTe hosts unique topological surface states that may have improved thermoelectric properties. Here we report on the vapor-transport growth and thermoelectric study of high-quality single-crystalline PbTe and PbSnTe nanowires. The nanowires were grown along the < 001 > direction with dominant {100} facets; the chemical compositions of the wires depend strongly on the substrate position in the growth reactor. We measured the thermopower and electrical and thermal conductivities of individual nanowires to determine the thermoelectric figure of merit ZT. Compared to bulk samples, the PbSnTe nanowires showed both improved thermopower and suppressed thermal conductivity, enhancing the ZTs to ~0.018 and ~0.035 at room temperature. The enhanced thermopower may result from the unique topological surface states; the suppression of thermal conductivity may relate to increased phonon-surface scattering. Compared to PbTe nanowires, the PbSnTe wires have lower thermopower but significantly higher electrical conductivities. This study highlights nanostructuring in combination with alloying as an important approach to enhancing the figure of merit ZT of thermoelectric materials.

Keywords: nanowire, topological crystalline insulator, thermoelectrics, PbSnTe

References(68)

1

Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

2

Zebarjadi, M.; Esfarjani, K.; Dresselhaus, M. S.; Ren, Z. F.; Chen, G. Perspectives on thermoelectrics: From fundamentals to device applications. Energy Environ. Sci. 2012, 5, 5147– 5162.

3

LaLonde, A. D.; Pei, Y. Z.; Wang, H.; Snyder, G. J. Lead telluride alloy thermoelectrics. Mater. Today 2011, 14, 526–532.

4

Pei, Y. Z.; LaLonde, A.; Iwanaga, S.; Snyder, G. J. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ. Sci. 2011, 4, 2085–2089.

5

LaLonde, A. D.; Pei, Y. Z.; Snyder, G. J. Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material. Energy Environ. Sci. 2011, 4, 2090–2096.

6

Heremans, J. P.; Jovovic, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557.

7

Pei, Y. Z.; Shi, X. Y.; LaLonde, A.; Wang, H.; Chen, L. D.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69.

8

Zhang, Q.; Cao, F.; Liu, W. S.; Lukas, K.; Yu, B.; Chen, S.; Opeil, C.; Broido, D.; Chen, G.; Ren, Z. F. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-Type PbTe, PbSe, and PbTe1−ySey. J. Am. Chem. Soc. 2012, 134, 10031–10038.

9

Orihashi, M.; Noda, Y.; Chen, L. D.; Goto, T.; Hirai, T. Effect of tin content on thermoelectric properties of p-type lead tin telluride. J. Phys. Chem. Solids 2000, 61, 919–923.

10

Han, M. -K.; Zhou, X. Y.; Uher, C.; Kim, S. -J.; Kanatzidis, M. G. Increase in the figure of merit by Cd-substitution in Sn1−xPbxTe and effect of Pb/Sn ratio on thermoelectric properties. Adv. Energy Mater. 2012, 2, 1218–1225.

11

Minnich, A. J.; Dresselhaus, M. S.; Ren, Z. F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479.

12

Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 2010, 22, 3970–3980.

13

Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731.

14

Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631–16634.

15

Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229–2232.

16

Biswas, K.; He, J. Q.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High- performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418.

17

Weathers, A.; Shi, L. Thermal transport measurement techniques for nanowires and nanotubes. Ann. Rev. Heat Transfer 2013, 16, 101–134.

18

Szczech, J. R.; Higgins, J. M.; Jin, S. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 2011, 21, 4037–4055.

19

Li, D. Y.; Wu, Y. Y.; Kim, P.; Shi, L.; Yang, P. D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.

20

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

21

Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171.

22

Fardy, M.; Hochbaum, A. I.; Goldberger, J.; Zhang, M. M.; Yang, P. D. Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 2007, 19, 3047–3051.

23

Liang, W. J.; Rabin, O.; Hochbaum, A. I.; Fardy, M.; Zhang, M. J.; Yang, P. D. Thermoelectric properties of p-type PbSe nanowires. Nano Res. 2009, 2, 394–399.

24

Kang, J.; Roh, J. W.; Shim, W.; Ham, J.; Noh, J. S.; Lee, W. Reduction of lattice thermal conductivity in single Bi–Te core/shell nanowires with rough interface. Adv. Mater. 2011, 23, 3414–3419.

25

Soini, M.; Zardo, I.; Uccelli, E.; Funk, S.; Koblmüller, G.; Morral, A. F. I.; Abstreiter, G. Thermal conductivity of GaAs nanowires studied by micro-Raman spectroscopy combined with laser heating. Appl. Phys. Lett. 2010, 97, 263107.

26

Zuev, Y. M.; Lee, J. S.; Galloy, C.; Park, H.; Kim, P. Diameter dependence of the transport properties of antimony telluride nanowires. Nano Lett. 2010, 10, 3037–3040.

27

Roh, J. W.; Jang, S. Y.; Kang, J.; Lee, S.; Noh, J. S.; Kim, W.; Park, J.; Lee, W. Size-dependent thermal conductivity of individual single-crystalline PbTe nanowires. Appl. Phys. Lett. 2010, 96, 103101.

28

Moore, A. L.; Pettes, M. T.; Zhou, F.; Shi, L. Thermal conductivity suppression in bismuth nanowires. J. Appl. Phys. 2009, 106, 034310.

29

Martin, P. N.; Aksamija, Z.; Pop, E.; Ravaioli, U. Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. Nano Lett. 2010, 10, 1120–1124.

30

Li, G. D.; Liang, D.; Qiu, R. L. J.; Gao, X. P. A. Thermal conductivity measurement of individual Bi2Se3 nano-ribbon by self-heating three-ω method. Appl. Phys. Lett. 2013, 102, 043104.

31

Davami, K.; Weathers, A.; Kheirabi, N.; Mortazavi, B.; Pettes, M. T.; Shi, L.; Lee, J. S.; Meyyappan, M. Thermal conductivity of ZnTe nanowires. J. Appl. Phys. 2013, 114, 134314.

32

Guan, Z.; Gutu, T.; Yang, J. K.; Yang, Y.; Zinn, A. A.; Li, D. Y.; Xu, T. T. Boron carbide nanowires: Low temperature synthesis and structural and thermal conductivity characterization. J. Mater. Chem. 2012, 22, 9853–9860.

33

Zhang, T.; Wu, S. L.; Zheng, R. T.; Cheng, G. A. Significant reduction of thermal conductivity in silicon nanowire arrays. Nanotechnology 2013, 24, 505718.

34

Lee, S. H.; Shim, W.; Jang, S. Y.; Roh, J. W.; Kim, P.; Park, J.; Lee, W. Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method. Nanotechnology 2011, 22, 295707.

35

Bui, C. T.; Xie, R. G.; Zheng, M. R.; Zhang, Q. X.; Sow, C. H.; Li, B. W.; Thong, J. T. L. Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects. Small 2012, 8, 738–745.

36

Lee, E. K.; Yin, L.; Lee, Y.; Lee, J. W.; Lee, S. J.; Lee, J.; Cha, S. N.; Whang, D.; Hwang, G. S.; Hippalgaonkar, K. et al. Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. Nano Lett. 2012, 12, 2918–2923.

37

Martinez, J. A.; Provencio, P. P.; Picraux, S. T.; Sullivan, J. P.; Swartzentruber, B. S. Enhanced thermoelectric figure of merit in SiGe alloy nanowires by boundary and hole- phonon scattering. J. Appl. Phys. 2011, 110, 074317.

38

Finefrock, S. W.; Zhang, G. Q.; Bahk, J. H.; Fang, H. Y.; Yang, H. R.; Shakouri, A.; Wu, Y. Structure and thermoelectric properties of spark plasma sintered ultrathin PbTe nanowires. Nano Lett. 2014, 14, 3466–3473.

39

Jang, S. Y.; Kim, H. S.; Park, J.; Jung, M.; Kim, J.; Lee, S. H.; Roh, J. W.; Lee, W. Transport properties of single- crystalline n-type semiconducting PbTe nanowires. Nanotechnology 2009, 20, 415204.

40

Jung, H.; Park, D. Y.; Xiao, F.; Lee, K. H.; Choa, Y. H.; Yoo, B.; Myung, N. V. Electrodeposited single crystalline PbTe nanowires and their transport properties. J. Phys. Chem. C 2011, 115, 2993–2998.

41

Tai, G. A.; Guo, W. L.; Zhang, Z. H. Hydrothermal synthesis and thermoelectric transport properties of uniform single- crystalline pearl-necklace-shaped PbTe nanowires. Cryst. Growth Des. 2008, 8, 2906–2911.

42

Yan, Q. Y.; Chen, H.; Zhou, W. W.; Hng, H. H.; Boey, F. Y. C.; Ma, J. A simple chemical approach for PbTe nanowires with enhanced thermoelectric properties. Chem. Mater. 2008, 20, 6298–6300.

43

Yang, Y. A.; Taggart, D. K.; Cheng, M. H.; Hemminger, J. C.; Penner, R. M. High-throughput measurement of the Seebeck coefficient and the electrical conductivity of lithographically patterned polycrystalline PbTe nanowires. J. Phys. Chem. Lett. 2010, 1, 3004–3011.

44

Wrasse, E. O.; Torres, A.; Baierle, R. J.; Fazzio, A.; Schmidt, T. M. Size-effect induced high thermoelectric figure of merit in PbSe and PbTe nanowires. Phys. Chem. Chem. Phys. 2014, 16, 8114–8118.

45

Dedi; Lee, P. C.; Chien, C. H.; Dong, G. P.; Huang, W. C.; Chen, C. L.; Tseng, C. M.; Harutyunyan, S. R.; Lee, C. H.; Chen, Y. Y. Stress-induced growth of single-crystalline lead telluride nanowires and their thermoelectric transport properties. Appl. Phys. Lett. 2013, 103, 023115.

46

Tai, G. A.; Zhou, B.; Guo, W. L. Structural characterization and thermoelectric transport properties of uniform single- crystalline lead telluride nanowires. J. Phys. Chem. C 2008, 112, 11314–11318.

47

Hsieh, T. H.; Lin, H.; Liu, J. W.; Duan, W. H.; Bansil, A.; Fu, L. Topological crystalline insulators in the SnTe material class. Nat. Commun. 2012, 3, 982.

48

Liu, J. W.; Duan, W. H.; Fu, L. Two types of surface states in topological crystalline insulators. Phys. Rev. B 2013, 88, 241303(R).

49

Xu, S. Y.; Liu, C.; Alidoust, N.; Neupane, M.; Qian, D.; Belopolski, I.; Denlinger, J. D.; Wang, Y. J.; Lin, H.; Wray, L. A. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat. Commun. 2012, 3, 1192.

50

Xu, Y.; Gan, Z. X.; Zhang, S. C. Enhanced thermoelectric performance and anomalous Seebeck effects in topological insulators. Phys. Rev. Lett. 2014, 112, 226801.

51

Shi, H. L.; Parker, D.; Du, M. H.; Singh, D. J. Connecting thermoelectric performance and topological-insulator behavior: Bi2Te3 and Bi2Te2Se from first principles. Phys. Rev. Appl. 2015, 3, 014004.

52

Safdar, M.; Wang, Q. S.; Mirza, M.; Wang, Z. X.; Xu, K.; He, J. Topological surface transport properties of single- crystalline SnTe nanowire. Nano Lett. 2013, 13, 5344–5349.

53

Li, Z.; Shao, S.; Li, N.; McCall, K.; Wang, J.; Zhang, S. X. Single crystalline nanostructures of topological crystalline insulator SnTe with distinct facets and morphologies. Nano Lett. 2013, 13, 5443–5448.

54

Saghir, M.; Lees, M. R.; York, S. J.; Balakrishnan, G. Synthesis and characterization of nanomaterials of the topological crystalline insulator SnTe. Cryst. Growth Des. 2014, 14, 2009–2013.

55

Safdar, M.; Wang, Q. S.; Mirza, M.; Wang, Z. X.; He, J. Crystal shape engineering of topological crystalline insulator SnTe microcrystals and nanowires with huge thermal activation energy gap. Cryst. Growth Des. 2014, 14, 2502–2509.

56

Shen, J.; Jung, Y.; Disa, A. S.; Walker, F. J.; Ahn, C. H.; Cha, J. J. Synthesis of SnTe nanoplates with {100} and {111} surfaces. Nano Lett. 2014, 14, 4183–4188.

57

Zou, Y. -C.; Chen, Z. -G.; Lin, J.; Zhou, X. H.; Lu, W.; Drennan, J.; Zou, J. Controlling morphologies of SnTe nanostructures by tuning catalyst composition. Nano Res. 2015, 9, 3011–3019.

58

Zhao, S. L.; Wang, H. A.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H. L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288–295.

59

Deringer, V. L.; Dronskowski, R. Stabilities and reconstructions of PbTe crystal surfaces from density-functional theory. J. Phys. Chem. C 2013, 117, 24455–24461.

60

Bierman, M. J.; Lau, Y. K. A.; Kvit, A. V.; Schmitt, A. L.; Jin, S. Dislocation-driven nanowire growth and Eshelby twist. Science 2008, 320, 1060–1063.

61

Lau, Y. K. A.; Chernak, D. J.; Bierman, M. J.; Jin, S. Formation of PbS nanowire pine trees driven by screw dislocations. J. Am. Chem. Soc. 2009, 131, 16461–16471.

62

Allen, J. E.; Hemesath, E. R.; Perea, D. E.; Lensch-Falk, J. L.; Li, Z. Y.; Yin, F.; Gass, M. H.; Wang, P.; Bleloch, A. L.; Palmer, R. E. et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 2008, 3, 168–173.

63

Short, N. R. A redetermination of the lattice parameters of PbxSn1−xTe alloys. J. Phys. D: Appl. Phys. 1968, 1, 129.

64

Heremans, J. P.; Thrush, C. M.; Morelli, D. T. Thermopower enhancement in PbTe with Pb precipitates. J. Appl. Phys. 2005, 98, 063703.

65

Xu, E. Z.; Li, Z.; Martinez, J. A.; Sinitsyn, N.; Htoon, H.; Li, N.; Swartzentruber, B.; Hollingsworth, J. A.; Wang, J.; Zhang, S. X. Diameter dependent thermoelectric properties of individual SnTe nanowires. Nanoscale 2015, 7, 2869–2876.

66

Völklein, F.; Reith, H.; Cornelius, T. W.; Rauber, M.; Neumann, R. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires. Nanotechnology 2009, 20, 325706.

67

Grasser, T.; Tang, T. W.; Kosina, H.; Selberherr, S. A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 2003, 91, 251–274.

68

Brücker, H.; Jantsch, W. Modulation of fundamental absorption by free carrier heating in degenerate n-PbTe. Solid State Commun. 1981, 37, 83–85.

File
nr-9-3-820_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 August 2015
Revised: 25 November 2015
Accepted: 30 November 2015
Published: 03 February 2016
Issue date: March 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

We thank Dr. Julio Martinez, John Nogan, Anthony R. James, Douglas V. Pete, Denise B. Webb, and Renjie Chen for experimental assistances. S. X. Z., H. H., and N. S. acknowledge support from the Laboratory Directed Research & Development program at Los Alamos National Laboratory. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52- 06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). We also thank the Indiana University Nanoscale Characterization Facility for access to the instrumentation.

Return