Journal Home > Volume 9 , Issue 3

Nanocomposites combining magnetic and plasmonic components have received widespread attention in recent years due to their potential applications in biomedical research. Herein, we describe a facile method for growing small iron oxide nanoparticles on various plasmonic core materials with different shapes and surfaces by utilizing a polypyrrole interlayer. By focusing on Au nanorod@polypyrrole@iron oxide (Au NR@PPy@FexO) nanocomposites, we show that these systems exhibit a low r2/r1 ratio of 4.8, making them efficient T1 positive contrast-enhancing agents for magnetic resonance imaging (MRI). Moreover, we show that the nanocomposites are excellent photothermal agents in the second near infrared region, with high photothermal conversion efficiency, reaching up to 46%. In addition, the Au NR@PPy@FexO nanocomposites show very low cytotoxicity. In summary, the present results highlight the great potential of the synthetic method and the nanocomposites developed in this study for T1 MRI and/or infrared thermal imaging-guided photothermal cancer therapeutic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile synthesis of magnetic–plasmonic nanocomposites as T1 MRI contrast enhancing and photothermal therapeutic agents

Show Author's information Zhongzhen Yang1,2Xianguang Ding1,2Jiang Jiang1( )
Key Laboratory of Nano-Bio Interfacei-lab and Division of NanobiomedicineSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhou215123China
University of Chinese Academy of SciencesBeijing100049China

Abstract

Nanocomposites combining magnetic and plasmonic components have received widespread attention in recent years due to their potential applications in biomedical research. Herein, we describe a facile method for growing small iron oxide nanoparticles on various plasmonic core materials with different shapes and surfaces by utilizing a polypyrrole interlayer. By focusing on Au nanorod@polypyrrole@iron oxide (Au NR@PPy@FexO) nanocomposites, we show that these systems exhibit a low r2/r1 ratio of 4.8, making them efficient T1 positive contrast-enhancing agents for magnetic resonance imaging (MRI). Moreover, we show that the nanocomposites are excellent photothermal agents in the second near infrared region, with high photothermal conversion efficiency, reaching up to 46%. In addition, the Au NR@PPy@FexO nanocomposites show very low cytotoxicity. In summary, the present results highlight the great potential of the synthetic method and the nanocomposites developed in this study for T1 MRI and/or infrared thermal imaging-guided photothermal cancer therapeutic applications.

Keywords: magnetic resonance imaging (MRI), iron oxide, theranostics, plasmonics, photothermal, T1

References(64)

1

Dong, W. J.; Li, Y. S.; Niu, D. C.; Ma, Z.; Gu, J. L.; Chen, Y.; Zhao, W. R.; Liu, X. H.; Liu, C. S.; Shi, J. L. Facile synthesis of monodisperse superparamagnetic Fe3O4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater. 2011, 23, 5392-5397.

2

Xu, C. J.; Wang, B. D.; Sun, S. H. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 2009, 131, 4216-4217.

3

Bardhan, R.; Chen, W. X.; Bartels, M.; Perez-Torres, C.; Botero, M. F.; McAninch, R. W.; Contreras, A.; Schiff, R.; Pautler, R. G.; Halas, N. J. et al. Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo. Nano Lett. 2010, 10, 4920-4928.

4

Lal, S.; Clare, S. E.; Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008, 41, 1842-1851.

5

Wang, C. G.; Chen, J. J.; Talavage, T.; Irudayaraj, J. Gold nanorod/Fe3O4 nanoparticle "nano-pearl-necklaces" for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew. Chem., Int. Ed. 2009, 48, 2759-2763.

6

Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008, 2, 889-896.

7

Larson, T. A.; Bankson, J.; Aaron, J.; Sokolov, K. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 2007, 18, 325101.

8

Ma, L. L.; Feldman, M. D.; Tam, J. M.; Paranjape, A. S.; Cheruku, K. K.; Larson, T. A.; Tam, J. O.; Ingram, D. R.; Paramita, V.; Villard, J. W. et al. Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. ACS Nano 2009, 3, 2686-2696.

9

El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5, 829-834.

10

Wu, X.; Ming, T.; Wang, X.; Wang, P. N.; Wang, J. F.; Chen, J. Y. High-photoluminescence-yield gold nanocubes: For cell imaging and photothermal therapy. ACS Nano 2010, 4, 113-120.

11

Novo, C.; Funston, A. M.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Spectroscopy and high-resolution microscopy of single nanocrystals by a focused ion beam registration method. Angew. Chem., Int. Ed. 2007, 46, 3517-3520.

12

Kennedy, L. C.; Bickford, L. R.; Lewinski, N. A.; Coughlin, A. J.; Hu, Y.; Day, E. S.; West, J. L.; Drezek, R. A. A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies. Small 2011, 7, 169-183.

13

Chen, J. Y.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M. X.; Gidding, M.; Welch, M. J.; Xia, Y. N. Gold nanocages as photothermal transducers for cancer treatment. Small 2010, 6, 811-817.

14

Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003, 100, 13549-13554.

15

Weissleder, R.; Pittet, M. J. Imaging in the era of molecular oncology. Nature 2008, 452, 580-589.

16

Na, H. B.; Hyeon, T. Nanostructured T1 MRI contrast agents. J. Mater. Chem. 2009, 19, 6267-6273.

17

Na, H. B.; Song, I. C.; Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009, 21, 2133-2148.

18

Jun, Y. W.; Huh, Y. M.; Choi, J. S.; Lee, J. H.; Song, H. T.; Kim, S.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S. et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 2005, 127, 5732-5733.

19

Jun, Y. -W.; Seo, J. -W.; Cheon, A. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 2008, 41, 179-189.

20

Huh, Y. M.; Jun, Y. W.; Song, H. T.; Kim, S.; Choi, J. S.; Lee, J. H.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S. et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005, 127, 12387-12391.

21

Gao, J. H.; Liang, G. L.; Cheung, J. S.; Pan, Y.; Kuang, Y.; Zhao, F.; Zhang, B.; Zhang, X. X.; Wu, E. X.; Xu, B. Multifunctional yolk-shell nanoparticles: A potential MRI contrast and anticancer agent. J. Am. Chem. Soc. 2008, 130, 11828-11833.

22

Lee, N.; Kim, H.; Choi, S. H.; Park, M.; Kim, D.; Kim, H. -C.; Choi, Y.; Lin, S.; Kim, B. H.; Jung, H. S. et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc. Natl. Acad. Sci. USA 2011, 108, 2662-2667.

23

Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 2006, 35, 512-523.

24

Hifumi, H.; Yamaoka, S.; Tanimoto, A.; Citterio, D.; Suzuki, K. Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J. Am. Chem. Soc. 2006, 128, 15090-15091.

25

Park, Y. I.; Kim, J. H.; Lee, K. T.; Jeon, K. -S.; Na, H. B.; Yu, J. H.; Kim, H. M.; Lee, N.; Choi, S. H.; Baik, S. -I. et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 2009, 21, 4467-4471.

26

Bridot, J. -L.; Faure, A. -C.; Laurent, S.; Rivière, C.; Billotey, C.; Hiba, B.; Janier, M.; Josserand, V.; Coll, J. -L.; Vander Elst, L. et al. Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc. 2007, 129, 5076-5084.

27

Rieter, W. J.; Kim, J. S.; Taylor, K. M. L.; An, H.; Lin, W. L.; Tarrant, T.; Lin, W. B. Hybrid silica nanoparticles for multimodal imaging. Angew. Chem., Int. Ed. 2007, 46, 3680-3682.

28

Na, H. B.; Lee, J. H.; An, K.; Park, Y. I.; Park, M.; Lee, I. S.; Nam, D. -H.; Kim, S. T.; Kim, S. -H.; Kim, S. -W. et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 5397-5401.

29

Choi, S. -H.; Na, H. B.; Park, Y. I.; An, K.; Kwon, S. G.; Jang, Y.; Park, M. -H.; Moon, J.; Son, J. S.; Song, I. C. et al. Simple and generalized synthesis of oxide-metal heterostructured nanoparticles and their applications in multimodal biomedical probes. J. Am. Chem. Soc. 2008, 130, 15573- 15580.

30

An, K.; Kwon, S. G.; Park, M.; Na, H. B.; Baik, S. -I.; Yu, J. H.; Kim, D.; Son, J. S.; Kim, Y. W.; Song, I. C. et al. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano Lett. 2008, 8, 4252-4258.

31

Yang, H.; Zhuang, Y. M.; Hu, H.; Du, X. X.; Zhang, C. X.; Shi, X. Y.; Wu, H. X.; Yang, S. P. Silica-coated manganese oxide nanoparticles as a platform for targeted magnetic resonance and fluorescence imaging of cancer cells. Adv. Funct. Mater. 2010, 20, 1733-1741.

32

Kim, T.; Momin, E.; Choi, J.; Yuan, K.; Zaidi, H.; Kim, J.; Park, M.; Lee, N.; McMahon, M. T.; Quinones-Hinojosa, A. et al. Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J. Am. Chem. Soc. 2011, 133, 2955-2961.

33

Penfield, J. G.; Reilly, R. F., Jr. What nephrologists need to know about gadolinium. Nat. Clin. Pract. Nephrol. 2007, 3, 654-668.

34

Limbach, L. K.; Wick, P.; Manser, P.; Grass, R. N.; Bruinink, A.; Stark, W. J. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007, 41, 4158-4163.

35

Bardhan, R.; Chen, W. X.; Perez-Torres, C.; Bartels, M.; Huschka, R. M.; Zhao, L. L.; Morosan, E.; Pautler, R. G.; Joshi, A.; Halas, N. J. Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv. Funct. Mater. 2009, 19, 3901-3909.

36

Kim, J.; Park, S.; Lee, J. E.; Jin, S. M.; Lee, J. H.; Lee, I. S.; Yang, I.; Kim, J. -S.; Kim, S. K.; Cho, M. -H. et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew. Chem., Int. Ed. 2006, 45, 7754-7758.

37

Wang, L. Y.; Bai, J. W.; Li, Y. J.; Huang, Y. Multifunctional nanoparticles displaying magnetization and near-IR absorption. Angew. Chem., Int. Ed. 2008, 47, 2439-2442.

38

Melancon, M. P.; Lu, W.; Zhong, M.; Zhou, M.; Liang, G.; Elliott, A. M.; Hazle, J. D.; Myers, J. N.; Li, C.; Stafford, R. J. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials 2011, 32, 7600-7608.

39

Ji, X.; Shao, R.; Elliott, A. M.; Stafford, R. J.; Esparza-Coss, E.; Bankson, J. A.; Liang, G.; Luo, Z. -P.; Park, K.; Markert, J. T. et al. Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J. Phys. Chem. C 2007, 111, 6245-6251.

40

Tian, Q. W.; Hu, J. Q.; Zhu, Y. H.; Zou, R. J.; Chen, Z. G.; Yang, S. P.; Li, R. W.; Su, Q. Q.; Han, Y.; Liu, X. G. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual- modal imaging and photothermal therapy. J. Am. Chem. Soc. 2013, 135, 8571-8577.

41

Roch, A.; Muller, R. N.; Gillis, P. Theory of proton relaxation induced by superparamagnetic particles. J. Chem. Phys. 1999, 110, 5403-5411.

42

Taboada, E.; Rodriguez, E.; Roig, A.; Oró, J.; Roch, A.; Muller, R. N. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 2007, 23, 4583-4588.

43

Tromsdorf, U. I.; Bruns, O. T.; Salmen, S. C.; Beisiegel, U.; Weller, H. A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett. 2009, 9, 4434-4440.

44

Hu, F. Q.; MacRenaris, K. W.; Waters, E. A.; Liang, T. Y.; Schultz-Sikma, E. A.; Eckermann, A. L.; Meade, T. J. Ultrasmall, water-soluble magnetite nanoparticles with high relaxivity for magnetic resonance imaging. J. Phys. Chem. C 2009, 113, 20855-20860.

45

Shen, L. -H.; Bao, J. -F.; Wang, D.; Wang, Y. -X.; Chen, Z. -W.; Ren, L.; Zhou, X.; Ke, X. -B.; Chen, M.; Yang, A. -Q. One-step synthesis of monodisperse, water-soluble ultra- small Fe3O4 nanoparticles for potential bio-application. Nanoscale 2013, 5, 2133-2141.

46

Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765-771.

47

Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20-22.

48

Li, J.; Wu, J.; Zhang, X.; Liu, Y.; Zhou, D.; Sun, H. Z.; Zhang, H.; Yang, B. Controllable synthesis of stable urchin-like gold nanoparticles using hydroquinone to tune the reactivity of gold chloride. J. Phys. Chem. C 2011, 115, 3630-3637.

49

Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201-7206.

50

Lie, S. Q.; Wang, D. M.; Gao, M. X.; Huang, C. Z. Controllable copper deficiency in Cu2-xSe nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence. Nanoscale 2014, 6, 10289-10296.

51

Xing, S. X.; Tan, L. H.; Yang, M. X.; Pan, M.; Lv, Y. B.; Tang, Q. H.; Yang, Y. H.; Chen, H. Y. Highly controlled core/shell structures: Tunable conductive polymer shells on gold nanoparticles and nanochains. J. Mater. Chem. 2009, 19, 3286-3291.

52

Lin, M.; Guo, C. R.; Li, J.; Zhou, D.; Liu, K.; Zhang, X.; Xu, T. S.; Zhang, H.; Wang, L. P.; Yang, B. Polypyrrole- coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%. ACS Appl. Mater. Interfaces 2014, 6, 5860-5868.

53

Liu, Z. M.; Ye, B. G.; Jin, M.; Chen, H. L.; Zhong, H. Q.; Wang, X. P.; Guo, Z. Y. Dye-free near-infrared surface- enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy. Nanoscale 2015, 7, 6754-6761.

54

Zha, Z. B.; Yue, X. L.; Ren, Q. S.; Dai, Z. F. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 2013, 25, 777-782.

55

Wang, Q.; Wang, J. D.; Lv, G.; Wang, F.; Zhou, X. K.; Hu, J. Q.; Wang, Q. G. Facile synthesis of hydrophilic polypyrrole nanoparticles for photothermal cancer therapy. J. Mater. Sci. 2014, 49, 3484-3490.

56

Hong, J. -Y.; Yoon, H.; Jang, J. Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: A light-scattering analysis. Small 2010, 6, 679-686.

57

Feng, W.; Zhou, X. J.; Nie, W.; Chen, L.; Qiu, K. X.; Zhang, Y. Z.; He, C. L. Au/polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: An in vitro study. ACS Appl. Mater. Interfaces 2015, 7, 4354-4367.

58

Tian, Q. W.; Wang, Q.; Yao, K. X.; Teng, B. Y.; Zhang, J. Z.; Yang, S. P.; Han, Y. Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 2014, 10, 1063-1068.

59

Vaitkuviene, A.; Kaseta, V.; Voronovic, J.; Ramanauskaite, G.; Biziuleviciene, G.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization. J. Hazard. Mater. 2013, 250-251, 167-174.

60

Stewart, E. M.; Liu, X.; Clark, G. M.; Kapsa, R. M. I.; Wallace, G. G. Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole. Acta Biomater. 2012, 8, 194-200.

61

Ramanaviciene, A.; Kausaite, A.; Tautkus, S.; Ramanavicius, A. Biocompatibility of polypyrrole particles: An in-vivo study in mice. J. Pharm. Pharmacol. 2007, 59, 311-315.

62

Peng, Y. -K.; Liu, C. -L.; Chen, H. -C.; Chou, S. -W.; Tseng, W. -H.; Tseng, Y. -J.; Kang, C. -C.; Hsiao, J. -K.; Chou, P. -T. Antiferromagnetic iron nanocolloids: A new generation in vivo T1 MRI contrast agent. J. Am. Chem. Soc. 2013, 135, 18621-18628.

63

Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636-3641.

64

Ding, X. G.; Liow, C. H.; Zhang, M. X.; Huang, R. J.; Li, C. Y.; Shen, H.; Liu, M. Y.; Zou, Y.; Gao, N.; Zhang, Z. J. et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684-15693.

File
nr-9-3-787_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 September 2015
Revised: 18 November 2015
Accepted: 25 November 2015
Published: 14 January 2016
Issue date: March 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work is funded by the "Hundred Talents" program of Chinese Academy of Sciences, and National Natural Science Foundation of China (Nos. 21175148 and 21473243).

Return