Journal Home > Volume 9 , Issue 3

A chitosan-polyvinyl alcohol (CS/PVA) co-polymer substrate possessing a large number of amino and hydroxyl groups is used as a substrate to induce the direct growth and in situ sequential transformation of titanate crystals under HF vapor phase hydrothermal conditions. The process involves four distinct formation/transformation stages. HTiOF3 crystals with well-defined hexagonal shapes are formed during stage I, and are subsequently transformed into {001} faceted anatase TiO2 crystal nanosheets during stage II. Interestingly, the formed anatase TiO2 crystals are further transformed into cross-shaped and hollow squareshaped HTiOF3 crystals during stages III and IV, respectively. Although TiO2 crystal phases and facet transformations under hydrothermal conditions have been previously reported, in situ crystal transformations between different titanate compounds have not been widely reported. Such crystal formation/transformations are likely due to the presence of large numbers of amino groups in the CS/PVA substrate. When celluloses possessing only hydroxyl groups are used as a substrate, the direct formation of {001} faceted TiO2 nanocrystal sheets is observed (rather than any sequential crystal transformations). This substrate organic functional group-induced crystal formation/transformation approach could be applicable to other material systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Growth and in situ transformation of TiO2 and HTiOF3 crystals on chitosan-polyvinyl alcohol co-polymer substrates under vapor phase hydrothermal conditions

Show Author's information Tianxing Wu1Guozhong Wang1( )Xiaoguang Zhu1Porun Liu2Xian Zhang1Haimin Zhang1Yunxia Zhang1Huijun Zhao1,2( )
Key Laboratory of Materials PhysicsCentre for Environmental and Energy NanomaterialsAnhui Key Laboratory of Nanomaterials and NanostructuresInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031China
Centre for Clean Environment and EnergyGold Coast CampusGriffith UniversityQueensland4222Australia

Abstract

A chitosan-polyvinyl alcohol (CS/PVA) co-polymer substrate possessing a large number of amino and hydroxyl groups is used as a substrate to induce the direct growth and in situ sequential transformation of titanate crystals under HF vapor phase hydrothermal conditions. The process involves four distinct formation/transformation stages. HTiOF3 crystals with well-defined hexagonal shapes are formed during stage I, and are subsequently transformed into {001} faceted anatase TiO2 crystal nanosheets during stage II. Interestingly, the formed anatase TiO2 crystals are further transformed into cross-shaped and hollow squareshaped HTiOF3 crystals during stages III and IV, respectively. Although TiO2 crystal phases and facet transformations under hydrothermal conditions have been previously reported, in situ crystal transformations between different titanate compounds have not been widely reported. Such crystal formation/transformations are likely due to the presence of large numbers of amino groups in the CS/PVA substrate. When celluloses possessing only hydroxyl groups are used as a substrate, the direct formation of {001} faceted TiO2 nanocrystal sheets is observed (rather than any sequential crystal transformations). This substrate organic functional group-induced crystal formation/transformation approach could be applicable to other material systems.

Keywords: vapor phase hydrothermal synthesis, crystal transformation, titanate compounds

References(43)

1

Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132-138.

2

Tsung, C. -K.; Kuhn, J. N.; Huang, W. Y.; Aliaga, C.; Hung, L. -I.; Somorjai, G. A.; Yang, P. D. Sub-10 nm platinum nanocrystals with size and shape control: Catalytic study for ethylene and pyrrole hydrogenation. J. Am. Chem. Soc. 2009, 131, 5816-5822.

3

Liu, P. R.; Zhang, H. M.; Liu, H. W.; Wang, Y.; An, T. C.; Cai, W. P.; Yang, H. G.; Yao, X. D.; Zhu, G. S.; Webb, R. et al. Vapor-phase hydrothermal growth of novel segmentally configured nanotubular crystal structure. Small 2013, 9, 3043-3050.

4

Yang, S.; Hou, Y.; Zhang, B.; Yang, X. H.; Zhang, H. M.; Zhao, H. J.; Yang, H. G. Precisely controlled heterogeneous nucleation sites for TiO2 crystal growth. CrystEngComm 2014, 16, 7502-7506.

5

Yang, S.; Huang, N.; Jin, Y. M.; Zhang, H. Q.; Su, Y. H.; Yang, H. G. Crystal shape engineering of anatase TiO2 and its biomedical applications. CrystEngComm 2015, 17, 6617-6631.

6

Chen, J. Y.; Wang, Y.; Deng, Y. Combined effects of Bi deficiency and Mn substitution on the structural transformation and functionality of BiFeO3 films. J. Appl. Phys. 2014, 116, 174102.

7

Han, J.; Chen, R.; Wang, M. G.; Lu, S.; Guo, R. Core-shell to yolk-shell nanostructure transformation by a novel sacrificial template-free strategy. Chem. Commun. 2013, 49, 11566- 11568.

8

Liu, J. P.; Li, Y. Y.; Fan, H. J.; Zhu, Z. H.; Jiang, J.; Ding, R. M.; Hu, Y. Y.; Huang, X. T. Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: Large-area design and reversible lithium storage. Chem. Mater. 2010, 22, 212-217.

9

Liu, B.; Zeng, H. C. Direct growth of enclosed ZnO nanotubes. Nano Res. 2009, 2, 201-209.

10

Qiu, Y. C.; Xu, G. -L.; Kuang, Q.; Sun, S. -G.; Yang, S. H. Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis. Nano Res. 2012, 5, 826-832.

11

Goubet, N.; Pileni, M. -P. Negative supracrystals inducing a FCC-BCC transition in gold nanocrystal superlattices. Nano Res. 2014, 7, 171-179.

12

Chaudhari, A. K.; Nagarkar, S. S.; Joarder, B.; Mukherjee, S.; Ghosh, S. K. Structural dynamism and controlled chemical blocking/unblocking of active coordination space of a soft porous crystal. Inorg. Chem. 2013, 52, 12784-12789.

13

Yuan, S. L.; Li, X.; Zhang, X. K.; Jia, Y. X. Fabrication of Au-Ag bimetallic nanostructures through the galvanic replacement reaction of block copolymer-stabilized Ag nanoparticles with HAuCl4. Sci. Adv. Mater. 2015, 7, 918-923.

14

Yao, W.; Li, F. -L.; Li, H. -X.; Lang, J. -P. Fabrication of hollow Cu2O@CuO-supported Au-Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. J. Mater. Chem. A 2015, 3, 4578-4585.

15

Ai, L. H.; Yue, H. T.; Jiang, J. Sacrificial template-directed synthesis of mesoporous manganese oxide architectures with superior performance for organic dye adsorption. Nanoscale 2012, 4, 5401-5408.

16

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

17

Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891-2959.

18

Yoshida, R.; Suzuki, Y.; Yoshikawa, S. Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Mater. Chem. Phys. 2005, 91, 409-416.

19

Wang, C. -C.; Ying, J. Y. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 1999, 11, 3113-3120.

20

Zhang, H. M.; Han, Y. H.; Liu, X. L.; Liu, P. R.; Yu, H.; Zhang, S. Q.; Yao, X. D.; Zhao, H. J. Anatase TiO2 microspheres with exposed mirror-like plane {001} facets for high performance dye-sensitized solar cells (DSSCs). Chem. Commun. 2010, 46, 8395-8397.

21

Zhang, H. M.; Liu, P. R.; Li, F.; Liu, H. W.; Wang, Y.; Zhang, S. Q.; Guo, M. X.; Cheng, H. M.; Zhao, H. J. Facile fabrication of anatase TiO2 microspheres on solid substrates and surface crystal facet transformation from {001} to {101}. Chem. —Eur. J. 2011, 17, 5949-5957.

22

Liu, P. R.; Wang, Y.; Zhang, H. M.; An, T. C.; Yang, H. G.; Tang, Z. Y.; Cai, W. P.; Zhao, H. J. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets. Small 2012, 8, 3664- 3673.

23

Wulff, G. On the question of speed of growth and dissolution of crystal surfaces. Z. Krystallogr. Mineral. 1901, 34, 449-530.

24

Neagu, D.; Tsekouras, G.; Miller, D. N.; Ménard, H.; Irvine, J. T. S. In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 2013, 5, 916-923.

25

Borgström, M. T.; Wallentin, J.; Trägårdh, J.; Ramvall, P.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K. In situ etching for total control over axial and radial nanowire growth. Nano Res. 2010, 3, 264-270.

26

Dong, L. Q.; Shi, H.; Cheng, K.; Wang, Q.; Weng, W. J.; Han, W. Q. Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals. Nano Res. 2014, 7, 1311-1318.

27

Yan, Q.; Raghuveer, M. S.; Li, H.; Singh, B.; Kim, T.; Shima, M.; Bose, A.; Ramanath, G. Rod-shaped assemblies of FePt-PtTe2 through dynamic templating. Adv. Mater. 2007, 19, 4358-4363.

28

Yang, S.; Yang, B. X.; Wu, L.; Li, Y. H.; Liu, P. R.; Zhao, H. J.; Yu, Y. Y.; Gong, X. Q.; Yang, H. G. Titania single crystals with a curved surface. Nat. Commun. 2014, 5, 5355.

29

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638-641.

30

Mettela, G.; Kulkarni, G. U. Facet selective etching of Au microcrystallites. Nano Res. 2015, 8, 2925-2934.

31

Jun, Y. -W.; Choi, J. -S.; Cheon, J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem., Int. Ed. 2006, 45, 3414-3439.

32

Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y. B. Sequential nucleation and growth of complex nanostructured films. Adv. Funct. Mater. 2006, 16, 335-344.

33

Wen, C. Z.; Jiang, H. B.; Qiao, S. Z.; Yang, H. G.; Lu, G. Q. M. Synthesis of high-reactive facets dominated anatase TiO2. J. Mater. Chem. 2011, 21, 7052-7061.

34

Barnard, A. S.; Curtiss, L. A. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 2005, 5, 1261-1266.

35

Liu, S. W.; Yu, J. G.; Jaroniec, M. Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications. Chem. Mater. 2011, 23, 4085-4093.

36

Xiang, G. L.; Li, T. Y.; Wang, X. Reactive facets covered mosaic spheres of anatase TiO2 and related pseudo-isotropic effect. Inorg. Chem. 2011, 50, 6237-6242.

37

Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152-3153.

38

Qian, L.; Zhang, H. F. Green synthesis of chitosan-based nanofibers and their applications. Green Chem. 2010, 12, 1207-1214.

39

Abe, K.; Iwamoto, S.; Yano, H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 2007, 8, 3276-3278.

40

Simkovitch, R.; Huppert, D. Excited-state proton transfer of weak photoacids adsorbed on biomaterials: Proton transfer to glucosamine of chitosan. J. Phys. Chem. A 2015, 119, 641-651.

41

Liu, P. R.; Zhang, H. M.; Liu, H. W.; Wang, Y.; Yao, X. D.; Zhu, G. S.; Zhang, S. Q.; Zhao, H. J. A facile vapor-phase hydrothermal method for direct growth of titanate nanotubes on a titanium substrate via a distinctive nanosheet roll-up mechanism. J. Am. Chem. Soc. 2011, 133, 19032-19035.

42

Zhang, H. M.; Li, Y. B.; Liu, P. R.; Li, Y.; Yang, D. J.; Yang, H. G.; Zhao, H. J. A new vapor-phase hydrothermal method to concurrently grow ZnO nanotube and nanorod array films on different sides of a zinc foil substrate. Chem. —Eur. J. 2012, 18, 5165-5169.

43

Wang, Y.; Zhang, H. M.; Han, Y. H.; Liu, P. R.; Yao, X. D.; Zhao, H. J. A selective etching phenomenon on {001} faceted anatase titanium dioxide single crystal surfaces by hydrofluoric acid. Chem. Commun. 2011, 47, 2829-2831.

File
nr-9-3-745_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 October 2015
Revised: 16 November 2015
Accepted: 20 November 2015
Published: 13 January 2016
Issue date: March 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 51372248 and 51432009), the CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, China, and the CAS Pioneer Hundred Talents Program.

Return