Journal Home > Volume 9 , Issue 3

Surface acoustic waves (SAWs) are elastic waves that propagate on the surface of a solid, much like waves on the ocean, with SAW devices used widely in communication and sensing. The ability to dynamically control the properties of SAWs would allow the creation of devices with improved performance or new functionality. However, so far it has proved extremely difficult to develop a practical way of achieving this control. In this paper we demonstrate voltage control of SAWs in a hybrid graphene-lithium niobate device. The velocity shift of the SAWs was measured as the conductivity of the graphene was modulated using an ion-gel gate, with a 0.1% velocity shift achieved for a bias of approximately 1 V. This velocity shift is comparable to that previously achieved in much more complicated hybrid semiconductor devices, and optimization of this approach could therefore lead to a practical, cost-effective voltage-controlled velocity shifter. In addition, the piezoelectric fields associated with the SAW can also be used to trap and transport the charge carriers within the graphene. Uniquely to graphene, we show that the acoustoelectric current in the same device can be reversed, and switched off, using the gate voltage.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlling the properties of surface acoustic waves using graphene

Show Author's information Lokeshwar BandhuGeoffrey R. Nash( )
College of EngineeringMathematics and Physical SciencesUniversity of Exeter, Exeter, EX4 4QFUK

Abstract

Surface acoustic waves (SAWs) are elastic waves that propagate on the surface of a solid, much like waves on the ocean, with SAW devices used widely in communication and sensing. The ability to dynamically control the properties of SAWs would allow the creation of devices with improved performance or new functionality. However, so far it has proved extremely difficult to develop a practical way of achieving this control. In this paper we demonstrate voltage control of SAWs in a hybrid graphene-lithium niobate device. The velocity shift of the SAWs was measured as the conductivity of the graphene was modulated using an ion-gel gate, with a 0.1% velocity shift achieved for a bias of approximately 1 V. This velocity shift is comparable to that previously achieved in much more complicated hybrid semiconductor devices, and optimization of this approach could therefore lead to a practical, cost-effective voltage-controlled velocity shifter. In addition, the piezoelectric fields associated with the SAW can also be used to trap and transport the charge carriers within the graphene. Uniquely to graphene, we show that the acoustoelectric current in the same device can be reversed, and switched off, using the gate voltage.

Keywords: graphene, sensors, charge transport, surface acoustic wave

References(36)

1

White, R. M.; Voltmer, F. M. Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett. 1965, 7, 314–316.

2

Morgan, D. Surface Acoustic Wave Filters; Academic Press: London, 2007.

DOI
3

Ballantine, D. S.; White, R. M.; Martin, S. J.; Ricco, A. J.; Zellers, E. T.; Frye, G. C.; Wohltjen, H. Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications; Academic Press: San Diego, 1996.

DOI
4

Wixforth, A.; Kotthaus, J. P.; Weimann, G. Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron system. Phys. Rev. Lett. 1986, 56, 2104–2106.

5

Wixforth, A.; Scriba, J.; Wassermeier, M.; Kotthaus, J. P.; Weimann, G.; Schlapp, W. Surface acoustic waves on GaAs/AlxGa1-xAs heterostructures. Phys. Rev. B 1989, 40, 7874–7887.

6

Willett, R. L.; West, K. W.; Pfeiffer, L. N. Transition in the correlated 2D electron system induced by a periodic density modulation. Phys. Rev. Lett. 1997, 78, 4478–4481.

7

Nash, G. R.; Bending, S. J.; Boero, M.; Grambow, P.; Eberl, K.; Kershaw, Y. Anisotropic surface acoustic wave scattering in quantum-wire arrays. Phys. Rev. B 1996, 54, R8337–R8340.

8

Nash, G. R.; Bending, S. J.; Boero, M.; Riek, M.; Eberl, K. Surface-acoustic-wave absorption by quantum-dot arrays. Phys. Rev. B 1999, 59, 7649–7655.

9

Rotter, M.; Wixforth, A.; Ruile, W.; Bernklau, D.; Riechert, H. Giant acoustoelectric effect in GaAs/LiNbO3 hybrids. Appl. Phys. Lett. 1998, 73, 2128–2130.

10

Fal'ko, V. I.; Meshkov, S. V.; Iordanskii, S. V. Acoustoelectric drag effect in the two-dimensional electron gas at strong magnetic field. Phys. Rev. B 1993, 47, 9910–9912.

11

Shilton, J. M.; Talyanskii, V. I.; Pepper, M.; Ritchie, D. A.; Frost, J. E. F.; Ford, C. J. B.; Smith, C. G.; Jones, G. A. C. High-frequency single-electron transport in a quasi-onedimensional GaAs channel induced by surface acoustic waves. J. Phys. : Condens. Matter 1996, 8, L531.

12

Couto, O. D. D. Jr.; Lazić, S.; Iikawa, F.; Stotz, J. A. H.; Jahn, U.; Hey, R.; Santos, P. V. Photon anti-bunching in acoustically pumped quantum dots. Nat. Photonics 2009, 3, 645–648.

13

Hermelin, S.; Takada, S.; Yamamoto, M.; Tarucha, S.; Wieck, A. D.; Saminadayar, L.; Bäuerle, C.; Meunier, T. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 2011, 477, 435–438.

14

Schiefele, J.; Pedrós, J.; Sols, F.; Calle, F.; Guinea, F. Coupling light into graphene plasmons through surface acoustic waves. Phys. Rev. Lett. 2013, 111, 237405.

15

Zhang, S. H.; Xu, W. Absorption of surface acoustic waves by graphene. AIP Adv. 2011, 1, 022146.

16

Thalmeier, P.; Dóra, B.; Ziegler, K. Surface acoustic wave propagation in graphene. Phys. Rev. B 2010, 81, 041409.

17

Yurchenko, S. O.; Komarov, K. A.; Pustovoit, V. I. Multilayergraphene- based amplifier of surface acoustic waves. AIP Adv. 2015, 5, 057144.

18

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

19

Arsat, R.; Breedon, M.; Shafiei, M.; Spizziri, P. G.; Gilje, S.; Kaner, R. B.; Kalantar-Zadeh, K.; Wlodarski, W. Graphenelike nano-sheets for surface acoustic wave gas sensor applications. Chem. Phys. Lett. 2009, 467, 344–347.

20

Ciplys, D.; Rimeika, R.; Chivukula, V.; Shur, M. S.; Kim, J. H.; Xu, J. M. Surface acoustic waves in graphene structures: Response to ambient humidity. In Proceedings of the 2010 IEEE Sensors, Kona, HI, 2010, pp 785–788.

21

Guo, Y. J.; Zhang, J.; Zhao, C.; Hu, P. A.; Zu, X. T.; Fu, Y. Q. Graphene/LiNbO3 surface acoustic wave device based relative humidity sensor. Optik 2014, 125, 5800–5802.

22

Xuan, W. P.; He, M.; Meng, N.; He, X. L.; Wang, W. B.; Chen, J. K.; Shi, T. J.; Hasan, T.; Xu, Z.; Xu Y. et al. Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer. Sci. Rep. 2014, 4, 7206.

23

Whitehead, E. F.; Chick, E. M.; Bandhu, L.; Lawton, L. M.; Nash, G. R. Gas loading of graphene-quartz surface acoustic wave devices. Appl. Phys. Lett. 2013, 103, 063110.

24

Miseikis, V.; Cunningham, J. E.; Saeed, K.; O'Rorke, R.; Davies, A. G. Acoustically induced current flow in graphene. Appl. Phys. Lett. 2012, 100, 133105.

25

Santos, P. V.; Schumann, T.; Oliveira, M. H.; Lopes, J. M. J.; Riechert, H. Acousto-electric transport in epitaxial monolayer graphene on SiC. Appl. Phys. Lett. 2013, 102, 221907.

26

Bandhu, L.; Lawton, L. M.; Nash, G. R. Macroscopic acoustoelectric charge transport in graphene. Appl. Phys. Lett. 2013, 103, 133101.

27

Bandhu, L.; Nash, G. R. Temperature dependence of the acoustoelectric current in graphene. Appl. Phys. Lett. 2014, 105, 263106.

28

Poole, T.; Bandhu, L.; Nash, G. R. Acoustoelectric photoresponse in graphene. Appl. Phys. Lett. 2015, 106, 133107.

29

Pohl, A. A review of wireless SAW sensors. IEEE Trans. Ultrason., Ferroelect., Freq. Control 2000, 47, 317–332.

30

Kalinin, V. Wireless physical SAW sensors for automotive applications. In Proceedings of the 2011 IEEE International Ultrasonics Symposium, Orlando, USA, 2011, pp 212–221.

31

Chakraborty, B.; Das, A.; Sood, A. K. The formation of a p–n junction in a polymer electrolyte top-gated bilayer graphene transistor. Nanotechnology 2009, 20, 365203.

32

Budreau, A. J.; Carr, P. H.; Silva, J. H. New configuration for electronically variable saw delay line. In Proceedings of the 1982 Ultrasonics Symposium, San Diego, USA, 1982, pp 399–400.

33

Zhu, J.; Chen, Y.; Saraf, G.; Emanetoglu, N. W.; Lu, Y. C. Voltage tunable surface acoustic wave phase shifter using semiconducting/piezoelectric ZnO dual layers grown on r-Al2O3. Appl. Phys. Lett. 2006, 89, 103513.

34

Li., X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

35

Kim, B. J.; Jang, H.; Lee, S. K.; Hong, B. H.; Ahn, J. H.; Cho J. H. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 2010, 10, 3464–3466.

36

Liu, J. K.; Qian, Q. K.; Zou, Y.; Li, G. H.; Jin, Y. H.; Jiang, K. L.; Fan, S. S.; Li, Q. Q. Enhanced performance of graphene transistor with ion-gel top gate. Carbon 2014, 68, 480–486.

File
nr-9-3-685_ESM.pdf (601.9 KB)
Publication history
Copyright
Rights and permissions

Publication history

Received: 11 September 2015
Revised: 09 November 2015
Accepted: 16 November 2015
Published: 23 December 2015
Issue date: March 2016

Copyright

© The Author(s) 2015

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return