Journal Home > Volume 9 , Issue 3

Hollow microspheres of two bismuth oxychlorides, BiOCl and Bi24O31Cl10, were successfully synthesized using carbonaceous microsphere sacrificial templates. The phase evolution from BiOCl to Bi24O31Cl10 was easily realized by heating the former at 600 ℃. With a uniform diameter of about 200 nm, an average shell thickness of 40 nm, and basic nanosheets of < 20 nm, the hollow microspheres of both BiOCl and Bi24O31Cl10 showed high visible light photocatalytic activity towards the degradation of Rhodamine B (RhB). Besides the effective photosensitization process and efficient photointroduced carrier separation, the high photocatalytic activity was believed to result from their hollow-structure-dependent large visible light absorption. Moreover, as a chlorine-deficient analogue, the Bi24O31Cl10 hollow spheres possessed a narrower band gap, more dispersive band structure, and higher photocarrier conversion efficiency, which further helped them to exhibit better photocatalytic activity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bismuth oxychloride hollow microspheres with high visible light photocatalytic activity

Show Author's information Pengzhen Cui1Jiali Wang1Zumin Wang1Jun Chen1Xianran Xing1Lianzhou Wang2Ranbo Yu1,2( )
Department of Physical ChemistryUniversity of Science and Technology BeijingBeijing100083China
Nanomaterials CentreSchool of Chemical Engineering and AIBNThe University of QueenslandSt. LuciaBrisbaneQLD4072Australia

Abstract

Hollow microspheres of two bismuth oxychlorides, BiOCl and Bi24O31Cl10, were successfully synthesized using carbonaceous microsphere sacrificial templates. The phase evolution from BiOCl to Bi24O31Cl10 was easily realized by heating the former at 600 ℃. With a uniform diameter of about 200 nm, an average shell thickness of 40 nm, and basic nanosheets of < 20 nm, the hollow microspheres of both BiOCl and Bi24O31Cl10 showed high visible light photocatalytic activity towards the degradation of Rhodamine B (RhB). Besides the effective photosensitization process and efficient photointroduced carrier separation, the high photocatalytic activity was believed to result from their hollow-structure-dependent large visible light absorption. Moreover, as a chlorine-deficient analogue, the Bi24O31Cl10 hollow spheres possessed a narrower band gap, more dispersive band structure, and higher photocarrier conversion efficiency, which further helped them to exhibit better photocatalytic activity.

Keywords: hollow spheres, bismuth oxychloride, nanosturctures, visible light photocatalysis

References(44)

1

Zhang, X.; Zhang, L.; Hu, J. S.; Pan, C. L.; Hou, C. M. Facile hydrothermal synthesis of novel Bi12TiO20–Bi2WO6 heterostructure photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 2015, 346, 33–40.

2

Cheng, H. F.; Huang, B. B.; Dai, Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 2014, 6, 2009–2026.

3

Kudo, A. Development of photocatalyst materials for water splitting. Int. J. Hydrogen Energy 2006, 31, 197–202.

4

Kudo, A; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

5

Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54.

6

Wang, J. L.; Yang, X. D.; Zhao, K., Xu, P. F.; Zong, L. B.; Yu, R. B.; Wang, D.; Deng, J. X.; Chen, J.; Xing, X. R. Precursor-induced fabrication of β-Bi2O3 microspheres and their performance as visible-light-driven photocatalysts. J. Mater. Chem. A 2013, 1, 9069–9074.

7

Li, C. M.; Chen, G.; Sun, J. X.; Feng, Y. J.; Liu, J. J.; Dong, H. J. Ultrathin nanoflakes constructed erythrocyte-like Bi2WO6 hierarchical architecture via anionic self-regulation strategy for improving photocatalytic activity and gas-sensing property. Appl. Catal. B-Environ. 2015, 163, 415–423.

8

Yu, J. Q.; Kudo, A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv. Funct. Mater. 2006, 16, 2163–2169.

9

Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 2008, 112, 747–753.

10

Xia, J. X.; Zhang, J.; Yin, S.; Li, H. M.; Xu, H.; Xu, L.; Zhang, Q. Advanced visible light photocatalytic properties of BiOCl micro/nanospheres synthesized via reactable ionic liquids. J. Phys. Chem. Solids 2013, 74, 298–304.

11

Jiang, J.; Zhao, K.; Xiao, X. Y.; Zhang, L. Z. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2012, 134, 4473–4476.

12

Wang, L.; Shang, J.; Hao, W. C.; Jiang, S. Q.; Huang, S. H.; Wang, T. M.; Sun, Z. Q.; Du, Y.; Dou, S. X.; Xie, T. F. et al. A dye-sensitized visible light photocatalyst-Bi24O31Cl10. Sci. Rep. 2014, 4, 7384.

13

Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135, 10411–10417.

14

Zhao, K.; Qi, J.; Yin, H. J.; Wang, Z. M.; Zhao, S. L.; Ma, X.; Wan, J. W.; Chang, L.; Gao, Y.; Yu, R. B.; Tang, Z. Y. Efficient water oxidation under visible light by tuning surface defects on ceria nanorods. J. Mater. Chem. A 2015, 3, 20465–20470.

15

Zhang, K.; Liang J.; Wang, S.; Liu, J.; Ren, K. X.; Zheng, X.; Luo, H.; Peng, Y. J.; Zou, X.; Bo, X. et al. BiOCl sub-microcrystals induced by citric acid and their high photocatalytic activities. Cryst. Growth Des. 2012, 12, 793–803.

16

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

17

Qin, L. J.; Chen, Q. J.; Lan, R. J.; Jiang, R. Q.; Quan, X.; Xu, B.; Zhang, F.; Jia, Y. M. Effect of anodization parameters on morphology and photocatalysis properties of TiO2 nanotube arrays. J. Mater. Sci. Technol. 2015, 31, 1059–1064.

18

Shang, M.; Wang, W. Z.; Zhang, L.; Sun, S. M.; Wang, L.; Zhou, L. 3D Bi2WO6/TiO2 hierarchical heterostructure: Controllable synthesis and enhanced visible photocatalytic degradation performances. J. Phys. Chem. C 2009, 113, 14727–14731.

19

Han, J. T.; Huang, Y. H.; Wu, X. J.; Wu, C. L.; Wei, W.; Peng, B.; Huang, W.; Goodenough, J. B. Tunable synthesis of bismuth ferrites with various morphologies. Adv. Mater. 2006, 18, 2145–2148.

20

Wang, C. H.; Shao, C. L.; Liu, Y. C.; Zhang, L. Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scripta Mater. 2008, 59, 332–335.

21

Yuan, R. S.; Lin, C.; Wu, B. C.; Fu, X. Z. Synthesis of SnO2, Fe2O3, and BiOCl fibers from inorganic salts by a templating route. Eur. J. Inorg. Chem. 2009, 2009, 3537–3540.

22

Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.; Wang, W. D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B-Environ. 2006, 68, 125–129.

23

Ye, L. Q.; Zan, L.; Tian, L. H.; Peng, T. Y.; Zhang, J. J. The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 2011, 47, 6951–6953.

24

Xiong, J. Y.; Cheng, G.; Li, G. F.; Qin, F.; Chen, R. Well-crystallized square-like 2D BiOCl nanoplates: Mannitolassisted hydrothermal synthesis and improved visible-lightdriven photocatalytic performance. RSC Adv. 2011, 1, 1542–1553.

25

Wu, S. J; Wang, C.; Cui, Y. F.; Wang, T. M.; Huang, B. B.; Zhang, X. Y.; Qin, X. Y.; Brault, P. Synthesis and photocatalytic properties of BiOCl nanowire arrays. Mater. Lett. 2010, 64, 115–118.

26

Song, J. M.; Mao, C. J.; Niu, H. L.; Shen, Y. H.; Zhang, S. Y. Hierarchical structured bismuth oxychlorides: Selfassembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties. CrystEngComm 2010, 12, 3875–3881.

27

Zhu, L. P.; Liao, G. H.; Bing, N. C.; Wang, L. L.; Yang, Y.; Xie, H. Y. Self-assembled 3D BiOCl hierarchitectures: Tunable synthesis and characterization. CrystEngComm 2010, 12, 3791–3796.

28

Peng, S. J.; Li, L. L.; Zhu, P. N.; Wu, Y. Z.; Srinivasan, M.; Mhaisalkar, S. G.; Ramakrishna, S.; Yan, Q. Y. Controlled synthesis of BiOCl hierarchical self-assemblies with highly efficient photocatalytic properties. Chem. Asian J. 2013, 8, 258–268.

29

Chen, L.; Huang, R.; Xiong, M.; Yuan, Q.; He, J.; Jia, J.; Yao, M. Y.; Luo, S. L.; Au, C. T.; Yin S. F. Room-temperature synthesis of flower-like BiOX (X = Cl, Br, I) hierarchical structures and their visible-light photocatalytic activity. Inorg. Chem. 2013, 52, 11118–11125.

30

Wang, J. Y.; Yang, N. L.; Tang H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 125, 6545–6548.

31

Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.

32

Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J. A.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem., Int. Ed. 2011, 123, 2790–2793.

33

Yin, W. Z.; Wang, W. Z.; Shang, M.; Zhou, L.; Sun, S. M.; Wang, L. BiVO4 hollow nanospheres: Anchoring synthesis, growth mechanism, and their application in photocatalysis. Eur. J. Inorg. Chem. 2009, 2009, 4379–4384.

34

Shang, M.; Wang, W. Z.; Xu, H. L. New Bi2WO6 nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG. Cryst. Growth Des. 2008, 9, 991–996.

35

Cheng, H. F.; Huang, B. B.; Wang, Z. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. One-pot miniemulsion-mediated route to BiOBr hollow microspheres with highly efficient photocatalytic activity. Chem. —Eur. J. 2011, 17, 8039–8043.

36

Xu, H. L.; Wang, W. Z. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem., Int. Ed. 2007, 46, 1489–1492.

37

Li, Z. M.; Lai, X. Y.; Wang, H.; Mao, D.; Xing, C. J.; Wang, D. General synthesis of homogeneous hollow core–shell ferrite microspheres. J. Phys. Chem. C 2009, 113, 2792–2797.

38

Armelao, L.; Bottaro, G.; Maccato, C.; Tondello, E. Bismuth oxychloride nanoflakes: Interplay between compositionstructure and optical properties. Dalton T. 2012, 41, 5480–5485.

39

Lai, X. Y.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.

40

Xiao, X. Y.; Jiang, J.; Zhang, L. Z. Selective oxidation of benzyl alcohol into benzaldehyde over semiconductors under visible light: The case of Bi12O17Cl2 nanobelts. Appl. Catal., B-Environ. 2013, 142–143, 487–493.

41

Qin, X. Y.; Cheng, H. F.; Wang, W. J.; Huang, B. B.; Zhang, X. Y.; Dai, Y. Three dimensional BiOX (X = Cl, Br and I) hierarchical architectures: Facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation. Mater. Lett. 2013, 100, 285–288.

42

Li, J.; Yu, Y.; Zhang, L. Z. Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis. Nanoscale 2014, 6, 8473–8488.

43

Shang, J.; Hao, W. C.; Lv, X. J.; Wang, T. M.; Wang, X. L.; Du, Y.; Dou, S. X.; Xie, T. F.; Wang, D. J.; Wang, J. O. Bismuth oxybromide with reasonable photocatalytic reduction activity under visible light. ACS Catal. 2014, 4, 954–961.

44

Fu, H. B.; Pan, C. S.; Yao, W. Q.; Zhu, Y. F. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 2005, 109, 22432–22439.

File
nr-9-3-593_ESM.pdf (1.5 MB)
Publication history
Copyright

Publication history

Received: 24 August 2015
Revised: 05 November 2015
Accepted: 07 November 2015
Published: 01 February 2016
Issue date: March 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return