Journal Home > Volume 9 , Issue 2

Micro-supercapacitors (MSCs) as important on-chip micropower sources have attracted considerable attention because of their unique and advantageous design for optimized maximum functionality within a minimized sized chip and excellent mechanical flexibility/stability in miniaturized portable electronic device applications. In this work, we report a novel, high-performance flexible integrated on-chip MSC based on hybrid nanostructures of reduced graphene oxide/Fe2O3 hollow nanospheres using a microelectronic photo-lithography technology combined with plasma etching technique. The unique structural design for on-chip MSCs enables high-performance enhancements compared with graphene-only devices, exhibiting high specific capacitances of 11.57 F·cm-3 at a scan rate of 200 mV·s-1 and excellent rate capability and robust cycling stability with capacitance retention of 92.08% after 32, 000 charge/discharge cycles. Moreover, the on-chip MSCs exhibit superior flexibility and outstanding stability even after repetition of charge/discharge cycles under different bending states. As-fabricated highly flexible on-chip MSCs can be easily integrated with CdS nanowire-based photodetectors to form a highly compacted photodetecting system, exhibiting comparable performance to devices driven by conventional external energy storage units.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications

Show Author's information Shaosong Gu1,2Zheng Lou2Ludong Li2Zhaojun Chen3Xiangdong Ma1( )Guozhen Shen2( )
Department of Material Science and EngineeringChina University of Mining & Technology (Beijing)Beijing100083China
State Key Laboratory for Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
College of Chemical Science and EngineeringQingdao UniversityQingdao266071China

Abstract

Micro-supercapacitors (MSCs) as important on-chip micropower sources have attracted considerable attention because of their unique and advantageous design for optimized maximum functionality within a minimized sized chip and excellent mechanical flexibility/stability in miniaturized portable electronic device applications. In this work, we report a novel, high-performance flexible integrated on-chip MSC based on hybrid nanostructures of reduced graphene oxide/Fe2O3 hollow nanospheres using a microelectronic photo-lithography technology combined with plasma etching technique. The unique structural design for on-chip MSCs enables high-performance enhancements compared with graphene-only devices, exhibiting high specific capacitances of 11.57 F·cm-3 at a scan rate of 200 mV·s-1 and excellent rate capability and robust cycling stability with capacitance retention of 92.08% after 32, 000 charge/discharge cycles. Moreover, the on-chip MSCs exhibit superior flexibility and outstanding stability even after repetition of charge/discharge cycles under different bending states. As-fabricated highly flexible on-chip MSCs can be easily integrated with CdS nanowire-based photodetectors to form a highly compacted photodetecting system, exhibiting comparable performance to devices driven by conventional external energy storage units.

Keywords: flexible, photodetector, Fe2O3, microsupercapacitor

References(41)

1

Yao, S. C.; Tang, X. D.; Hsieh, C. C.; Alyousef, Y.; Vladimer, M.; Fedder, G. K.; Amon, C. H. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy 2006, 31, 636-649.

2

Patten, B.; Sánchez, I. A.; Tangney, B. Designing collaborative, constructionist and contextual applications for handheld devices. Comput. Educ. 2006, 46, 294-308.

3

Zhang, J.; Tan, K. L.; Gong, H. Q. Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS). Polym. Test. 2001, 20, 693-701.

4

Meng, Q. H.; Wu, H. Q.; Meng, Y. N.; Xie, K.; Wei, Z. X.; Guo, Z. X. High-performance all-carbon yarn micro- supercapacitor for an integrated energy system. Adv. Mater. 2014, 26, 4100-4106.

5

Zhu, Y. G.; Wang, Y.; Shi, Y. M.; Wong, J. I.; Yang, H. Y. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014, 3, 46-54.

6

Sumboja, A.; Foo, C. Y.; Wang, X.; Lee, P. S. Large areal mass, flexible and free-standing reduced graphene oxide/ manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 2013, 25, 2809-2815.

7

Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourg, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226-252.

8

Wang, Y.; Shi, Y. M.; Zhao, C. X.; Wong, J. I.; Sun, X. W.; Yang, H. Y. Printed all-solid flexible microsupercapacitors: Towards the general route for high energy storage devices. Nanotechnology 2014, 25, 094010.

9

Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Monolithic carbide-derived carbon films for micro- supercapacitors. Science 2010, 328, 480-483.

10

Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. -L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651-654.

11

Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496-500.

12

El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high- power graphene micro-supercapacitors for flexible and on- chip energy storage. Nat. Commun. 2013, 4, 1475.

13

Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphene- based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

14

Xu, J.; Shen, G. Z. A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 2015, 13, 131-139.

15

Lee, G.; Kim, D.; Yun, J.; Ko, Y. M.; Cho, J.; Ha, J. S. High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnOx nanocomposite electrodes. Nanoscale 2014, 6, 9655-9664.

16

Wu, H.; Jiang, K.; Gu, S. S.; Yang, H.; Lou, Z.; Chen, D.; Shen, G. Z. Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 2015, 8, 3544-3552.

17

Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151-2157.

18

Liu, W. W.; Feng, Y. Q.; Yan, X. B.; Chen, J. T.; Xue, Q. J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 2013, 23, 4111-4122.

19

Wu, Z. K.; Lin, Z. Y.; Li, L. Y.; Song, B.; Moon, K. S.; Bai, S. L.; Wong, C. P. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature. Nano Energy 2014, 10, 222-228.

20

Huang, P. H.; Pech, D.; Lin, R. Y.; McDonough, J. K.; Brunet, M.; Taberna, P. -L.; Gogotsi, Y.; Simon, P. On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem. Commun. 2013, 36, 53-56.

21

Xiong, G. P.; Meng, C. Z.; Reifenberger, R. G.; Irazoqui, P. P.; Fisher, T. S. A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 2014, 26, 30-51.

22

Niu, Z. Q.; Zhang, L.; Liu, L. L.; Zhu, B. W.; Dong, H. B.; Chen, X. D. All-solid-state flexible ultrathin micro- supercapacitors based on graphene. Adv. Mater. 2013, 25, 4035-4042.

23

Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72-78.

24

Lv, W.; Sun, F.; Tang, D. M.; Fang, H. T.; Liu, C.; Yang, Q. H.; Cheng, H. M. A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J. Mater. Chem. 2011, 21, 9014-9019.

25

Yan, J.; Wei, T.; Qiao, W. M.; Shao, B.; Zhao, Q. K.; Zhang, L. J.; Fan, Z. J. Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta 2010, 55, 6973-6978.

26

Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508-9514.

27

Chen, S.; Zhu, J. W.; Wang, X. One-step synthesis of graphene- cobalt hydroxide nanocomposites and their electrochemical properties. J. Phys. Chem. C. 2010, 114, 11829-11834.

28

Mahdi, N.; Golozar, M. A.; Rashed, G. Nano iron oxide (Fe2O3)/carbon black electrodes for electrochemical capacitors. Mater. Lett. 2012, 85, 40-43.

29

Sassin, M. B.; Mansour, A. N.; Pettigrew, K. A.; Rolison, D. R.; Long, J. W. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage. ACS Nano 2010, 4, 4505- 4514.

30

Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

31

Wang, L. L.; Lou, Z.; Deng, J.; Zhang, R.; Zhang T. Ethanol gas detection using a yolk-shell (core-shell) α-Fe2O3 nanospheres as sensing material. ACS Appl. Mater. Interfaces 2015, 7, 13098-13104.

32

Zou, Y. Q.; Wang, Y. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale 2011, 3, 2615-2620.

33

Lu, L. Q.; Wang, Y. Sheet-like and fusiform CuO nanostructures grown on graphene by rapid microwave heating for high Li-ion storage capacities. J. Mater. Chem. 2011, 21, 17916-17921.

34

Han, J. H.; Lin, Y. C.; Chen, L. Y.; Tsai, Y. C.; Ito, Y.; Guo, X. W.; Hirata, A.; Fujita, T.; Esashi, M.; Gessner, T. et al. On-chip micro-pseudocapacitors for ultrahigh energy and power delivery. Adv. Sci. 2015, 2, 1500067.

35

Wang, Q. F.; Wang, X. F.; Xu, J.; Ouyang, X.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 2014, 8, 44-51.

36

Zhang, X. H.; Gong, L.; Liu, K.; Cao, Y. Z.; Xiao, X.; Sun, W. M.; Hu, X. J.; Gao, Y. H.; Chen, J.; Zhou, J. et al. Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode. Adv. Mater. 2010, 22, 5292-5296

37

Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R. et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011, 47, 6858- 6860.

38

Xue, M. Q.; Li, F. W.; Zhu, J.; Song, H.; Zhang, M. N.; Cao, T. B. Structure-based enhanced capacitance: In situ growth of highly ordered polyaniline nanorods on reduced graphene oxide patterns. Adv. Funct. Mater. 2012, 22, 1284-1290.

39

Lu, X. H.; Yu, M. H.; Wang, G. M.; Zhai, T.; Xie, S. L.; Ling, Y. C.; Tong, Y. X.; Li, Y. H-TiO2@MnO2/H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 2013, 25, 267-272.

40

El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326-1330.

41

Chen, G.; Xie, X. M.; Shen, G. Z. Flexible organic-inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires. Nano Res. 2014, 7, 1777-1787.

File
nr-9-2-424_ESM.pdf (746.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 August 2015
Revised: 29 September 2015
Accepted: 13 October 2015
Published: 28 December 2015
Issue date: February 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation (No. 61377033).

Return