Journal Home > Volume 9 , Issue 2

Silver nanowires (AgNWs) have emerged as a promising nanomaterial for next generation stretchable electronics. However, until now, the fabrication of AgNWbased components has been hampered by complex and time-consuming steps. Here, we introduce a facile, fast, and one-step methodology for the fabrication of highly conductive and stretchable AgNW/polyurethane (PU) composite electrodes based on a high-intensity pulsed light (HIPL) technique. HIPL simultaneously improved wire–wire junction conductivity and wire–substrate adhesion at room temperature and in air within 50 μs, omitting the complex transfer–curing–implanting process. Owing to the localized deformation of PU at interfaces with AgNWs, embedding of the nanowires was rapidly carried out without substantial substrate damage. The resulting electrode retained a low sheet resistance (high electrical conductivity) of < 10 Ω/sq even under 100% strain, or after 1, 000 continuous stretching–relaxation cycles, with a peak strain of 60%. The fabricated electrode has found immediate application as a sensor for motion detection. Furthermore, based on our electrode, a light emitting diode (LED) driven by integrated stretchable AgNW conductors has been fabricated. In conclusion, our present fabrication approach is fast, simple, scalable, and costefficient, making it a good candidate for a future roll-to-roll process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light

Show Author's information Yang Yang1Su Ding2,3Teppei Araki2( )Jinting Jiu2Tohru Sugahara2Jun Wang2,3Jan Vanfleteren1( )Tsuyoshi Sekitani2Katsuaki Suganuma2
Center for Microsystems TechnologyIMEC and Ghent University9052Gent-ZwijnaardeBelgium
The Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki, Osaka567-0047Japan
State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China

Abstract

Silver nanowires (AgNWs) have emerged as a promising nanomaterial for next generation stretchable electronics. However, until now, the fabrication of AgNWbased components has been hampered by complex and time-consuming steps. Here, we introduce a facile, fast, and one-step methodology for the fabrication of highly conductive and stretchable AgNW/polyurethane (PU) composite electrodes based on a high-intensity pulsed light (HIPL) technique. HIPL simultaneously improved wire–wire junction conductivity and wire–substrate adhesion at room temperature and in air within 50 μs, omitting the complex transfer–curing–implanting process. Owing to the localized deformation of PU at interfaces with AgNWs, embedding of the nanowires was rapidly carried out without substantial substrate damage. The resulting electrode retained a low sheet resistance (high electrical conductivity) of < 10 Ω/sq even under 100% strain, or after 1, 000 continuous stretching–relaxation cycles, with a peak strain of 60%. The fabricated electrode has found immediate application as a sensor for motion detection. Furthermore, based on our electrode, a light emitting diode (LED) driven by integrated stretchable AgNW conductors has been fabricated. In conclusion, our present fabrication approach is fast, simple, scalable, and costefficient, making it a good candidate for a future roll-to-roll process.

Keywords: silver nanowires, stretchable electrode, photonic sintering, nanofabrication

References(51)

1

Rogers, J. A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603-1607.

2

Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

3

Vanfleteren, J.; Gonzalez, M.; Bossuyt, F.; Hsu, Y. -Y.; Vervust, T.; De Wolf, I.; Jablonski, M. Printed circuit board technology inspired stretchable circuits. MRS Bull. 2012, 37, 254-260.

4

Vervust, T.; Buyle, G.; Bossuyt, F.; Vanfleteren, J. Integration of stretchable and washable electronic modules for smart textile applications. J. Text. Inst. 2012, 103, 1127-1138.

5

Bossuyt, F.; Vervust, T.; Vanfleteren, J. Stretchable electronics technology for large area applications: Fabrication and mechanical characterization. IEEE Trans. Comp. Pack. Man. Technol. 2013, 3, 229-235.

6

Lai, Y. -C.; Huang, Y. -C.; Lin, T. -Y.; Wang, Y. -X.; Chang, C. -Y.; Li, Y.; Lin, T. -Y.; Ye, B. -W.; Hsieh, Y. -P.; Su, W. -F. et al. Stretchable organic memory: Toward learnable and digitized stretchable electronic applications. NPG Asia Mater. 2014, 6, e87.

7

Feng, X.; Yang, B. D.; Liu, Y. M.; Wang, Y.; Dagdeviren, C.; Liu, Z. J.; Carlson, A.; Li, J. Y.; Huang, Y. G.; Rogers, J. A. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano 2011, 5, 3326-3332.

8

Graz, I. M.; Lacour, S. P. Complementary organic thin film transistor circuits fabricated directly on silicone substrates. Organic Electronics 2010, 11, 1815-1820.

9

Lipomi, D. J.; Tee, B. C. K.; Vosgueritchian, M.; Bao, Z. Stretchable organic solar cells. Adv. Mater. 2011, 23, 1771-1775.

10

Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494-499.

11

Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458-463.

12

Hu, L. B.; Pasta, M.; Mantia, F. L.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708-714.

13

Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296-301.

14

Niu, Z. Q.; Dong, H. B.; Zhu, B. W.; Li, J. Z.; Hng, H. H.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 2013, 25, 1058-1064.

15

Yu, Z. B.; Niu, X. F.; Liu, Z. T.; Pei, Q. B. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 2011, 23, 3989-3994.

16

Sekitani, T.; Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 2010, 22, 2228-2246.

17

Liang, J. J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X. F.; Chen, Y. S.; Pei, Q. B. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 2014, 8, 1590-1600.

18

Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z. -Q.; Wang, Y.; Qian, L.; Zhang, Y. Y.; Li, Q. Q.; Jiang, K. L. et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 2008, 8, 4539-4545.

19

Hu, L. B.; Yuan, W.; Brochu, P.; Gruner, G.; Pei, Q. B. Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 2009, 94, 161108.

20

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Large- scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.

21

Chun, K. -Y.; Oh, Y.; Rho, J.; Ahn, J. -H.; Kim, Y. -J.; Choi, H. R.; Baik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 2010, 5, 853-857.

22

Araki, T.; Nogi, M.; Suganuma, K.; Kogure, M.; Kirihara, O. Printable and stretchable conductive wirings comprising silver flakes and elastomers. IEEE Electr. Device Lett. 2011, 32, 1424-1426.

23

Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M. -B.; Jeon, S.; Chung, D. -Y. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803-809.

24

Sun, J. -Y.; Zhao, X. H.; Illeperuma, W. R.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G. Highly stretchable and tough hydrogels. Nature 2012, 489, 133-136.

25

Keplinger, C.; Sun, J. -Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. G. Stretchable, transparent, ionic conductors. Science 2013, 341, 984-987.

26

Hu, L. B.; Kim, H. S.; Lee, J. -Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955-2963.

27

Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 24, 5117-5122.

28

Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 2012, 24, 3326-3332.

29

Hu, W. L.; Niu, X. F.; Zhao, R.; Pei, Q. B. Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett. 2013, 102, 083303.

30

Liang, J. J.; Li, L.; Niu, X. F.; Yu, Z. B.; Pei, Q. B. Elastomeric polymer light-emitting devices and displays. Nat. Photonics 2013, 7, 817-824.

31

Jiu, J. T.; Nogi, M.; Sugahara, T.; Tokuno, T.; Araki, T.; Komoda, N.; Suganuma, K.; Uchida, H.; Shinozaki, K. Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. J. Mater. Chem. 2012, 22, 23561-23567.

32

Jiu, J. T.; Sugahara, T.; Nogi, M.; Araki, T.; Suganuma, K.; Uchida, H.; Shinozaki, K. High-intensity pulse light sintering of silver nanowire transparent films on polymer substrates: The effect of the thermal properties of substrates on the performance of silver films. Nanoscale 2013, 5, 11820-11828.

33

Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241-249.

34

Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193-204.

35

Baffou, G.; Quidant, R.; Girard, C. Heat generation in plasmonic nanostructures: Influence of morphology. Appl. Phys. Lett. 2009, 94, 153109.

36

Kulkarni, D. D.; Kim, S.; Fedorov, A. G.; Tsukruk, V. V. Light-induced plasmon-assisted phase transformation of carbon on metal nanoparticles. Adv. Funct. Mater. 2012, 22, 2129-2139.

37

Araki, T.; Sugahara, T.; Jiu, J. T.; Nagao, S.; Nogi, M.; Koga, H.; Uchida, H.; Shinozaki, K.; Suganuma, K. Cu salt ink formulation for printed electronics using photonic sintering. Langmuir 2013, 29, 11192-11197.

38

Jiu, J.; Araki, T.; Wang, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; Suganuma, K.; Nakazawa, E.; Hara, M. et al. Facile synthesis of very-long silver nanowires for transparent electrodes. J. Mater. Chem. A 2014, 2, 6326-6330.

39

De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767-1774.

40

Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 3, 564-573.

41

Yun, S.; Niu, X. F.; Yu, Z. B.; Hu, W. L.; Brochu, P.; Pei, Q. B. Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. Adv. Mater. 2012, 24, 1321-1327.

42

Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154-5163.

43

Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905-2910.

44

Akter, T.; Kim, W. S. Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl. Mater. Interfaces 2012, 4, 1855-1859.

45

Zeng, X. Y.; Zhang, Q. K.; Yu, R. M.; Lu, C. Z. A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 2010, 22, 4484-4488.

46

Yu, Z. B.; Zhang, Q. W.; Li, L.; Chen, Q.; Niu, X. F.; Liu, J.; Pei, Q. B. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 2011, 23, 664-668.

47

Hu, W. L.; Niu, X. F.; Li, L.; Yun, S.; Yu, Z. B.; Pei, Q. B. Intrinsically stretchable transparent electrodes based on silver- nanowire-crosslinked-polyacrylate composites. Nanotechnology 2012, 23, 344002.

48

Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165-168.

49

Hu, X. L.; Krull, P.; de Graff, B.; Dowling, K.; Rogers, J. A.; Arora, W. J. Stretchable inorganic-semiconductor electronic systems. Adv. Mater. 2011, 23, 2933-2936.

50

Lacour, S. P.; Jones, J.; Wagner, S.; Li, T.; Suo, Z. G. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 2005, 93, 1459-1467.

51

Baldan, A. Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment. J. Mater. Sci. 2004, 39, 1-49.

File
nr-9-2-401_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 July 2015
Revised: 14 September 2015
Accepted: 13 October 2015
Published: 07 January 2016
Issue date: February 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

The authors would like to thank the members of Showa Denko K. K. for constructive discussions and encouragement. This work was supported by JSPS Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation, the Center of Innovation Program from Japan Science and Technology Agency of JST, JSPS KAKENHI (No. 15K21140), and the Flemish Agency for Innovation by Science and Technology (IWT)–through the program for Strategic Basic Research (SBO) under grant agreement n° 120024 (Self Sensing Composites).

Return