Journal Home > Volume 8 , Issue 12

To further understand the effect of structural defects on the electrochemical and photocatalytic properties of TiO2, two synthetic approaches based on hydrothermal synthesis and post-synthetic chemical reduction to achieve oxygen defectimplantation were developed herein. These approaches led to the formation of TiO2 nanorods with uniformly distributed defects in either the bulk or on the surface, or the combination of both, in the formed TiO2 nanorods (NRs). Both approaches utilize unique TiN nanoparticles as the reaction precursor. Electron microscopy and Brunauer-Emmett-Teller (BET) analyses indicate that all the studied samples exhibit similar morphology and similar specific surface areas. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) data confirm the existence of oxygen defects (VO). The photocatalytic properties of TiO2 with different types of implanted VO were evaluated based on photocatalytic H2 production. By optimizing the concentration of VO among the TiO2 NRs subjected to different treatments, significantly higher photocatalytic activities than that of the stoichiometric TiO2 NRs was achieved. The incident photon-to-current efficiency (IPCE) data indicate that the enhanced photocatalytic activity arises mainly from defect-assisted charge separation, which implies that photo-generated electrons or holes can be captured by VO and suppress the charge recombination process. The results show that the defective TiO2 obtained by combining the two approaches exhibits the greatest photocatalytic activity enhancement among all the samples.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Effect of defects on photocatalytic activity of rutile TiO2 nanorods

Show Author's information Zhao Zhao1,2,3,4Xiaoyan Zhang1,3Guoqiang Zhang1,3Zhenyu Liu1Dan Qu1,3Xiang Miao1,3Pingyun Feng4( )Zaicheng Sun1,2( )
State Key Laboratory of Luminescence and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsCAS.3888 East Nanhu RoadChangchun130033China
Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringBeijing University of TechnologyBeijing100124China
University of Chinese Academy of SciencesNo.19A Yuquan RoadBeijing100049China
Department of ChemistryUniversity of CaliforniaRiversideCA92521USA

Abstract

To further understand the effect of structural defects on the electrochemical and photocatalytic properties of TiO2, two synthetic approaches based on hydrothermal synthesis and post-synthetic chemical reduction to achieve oxygen defectimplantation were developed herein. These approaches led to the formation of TiO2 nanorods with uniformly distributed defects in either the bulk or on the surface, or the combination of both, in the formed TiO2 nanorods (NRs). Both approaches utilize unique TiN nanoparticles as the reaction precursor. Electron microscopy and Brunauer-Emmett-Teller (BET) analyses indicate that all the studied samples exhibit similar morphology and similar specific surface areas. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) data confirm the existence of oxygen defects (VO). The photocatalytic properties of TiO2 with different types of implanted VO were evaluated based on photocatalytic H2 production. By optimizing the concentration of VO among the TiO2 NRs subjected to different treatments, significantly higher photocatalytic activities than that of the stoichiometric TiO2 NRs was achieved. The incident photon-to-current efficiency (IPCE) data indicate that the enhanced photocatalytic activity arises mainly from defect-assisted charge separation, which implies that photo-generated electrons or holes can be captured by VO and suppress the charge recombination process. The results show that the defective TiO2 obtained by combining the two approaches exhibits the greatest photocatalytic activity enhancement among all the samples.

Keywords: defects, charge separation, TiO2, photocatalytic H2 generation, oxygen vacancies

References(44)

1

Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.

2

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.

3

Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141-145.

4

Li, X.; Wen, J. Q.; Low, J.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70-100.

5

Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987-10043.

6

Liu, L.; Chen, X. B. Titanium dioxide nanomaterials: Self- structural modifications. Chem. Rev. 2014, 114, 9890-9918.

7

Bally, A. R.; Korobeinikova, E. N.; Schmid, P. E.; Lévy, F.; Bussy, F. Structural and electrical properties of Fe-doped TiO2 thin films. J. Phys. D: Appl. Phys. 1998, 31, 1149- 1154.

8

Nowotny, M. K.; Sheppard, L. R.; Bak, T.; Nowotny, J. Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C 2008, 112, 5275-5300.

9

Pan, X. Y.; Yang, M. Q.; Fu, X. Z.; Zhang, N.; Xu, Y. J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601- 3614.

10

Hu, Y. H. A highly efficient photocatalyst - Hydrogenated black TiO2 for the photocatalytic splitting of water. Angew. Chem., Int. Ed. 2012, 51, 12410-12412.

11

Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600-7603.

12

Zuo, F.; Wang, L.; Wu, T.; Zhang, Z. Y.; Borchardt, D.; Feng, P. Y. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 2010, 132, 11856-11857.

13

Zheng, Z. K.; Huang, B. B.; Meng, X. D.; Wang, J. P.; Wang, S. Y.; Lou, Z. Z.; Wang, Z. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Metallic zinc-assisted synthesis of Ti3+ self- doped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chem. Commun. 2013, 49, 868-870.

14

Zhao, Z.; Tan, H. Q.; Zhao, H. F.; Lv, Y.; Zhou, L. -J.; Song, Y. J.; Sun, Z. C. Reduced TiO2 rutile nanorods with well- defined facets and their visible-light photocatalytic activity. Chem. Commun. 2014, 50, 2755-2757.

15

Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Y. Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 124, 6327-6330.

16

Justicia, I.; Ordejón, P.; Canto, G.; Mozos, J. L.; Fraxedas, J.; Battiston, G. A.; Gerbasi, R.; Figueras, A. Designed self- doped titanium oxide thin films for efficient visible-light photocatalysis. Adv. Mater. 2002, 14, 1399-1402.

DOI
17

Han, B.; Hu, Y. H. Highly efficient temperature-induced visible light photocatalytic hydrogen production from water. J. Phys. Chem. C 2015, 119, 18927-18934.

18

Wang, G. M.; Ling, Y. C.; Li, Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 2012, 4, 6682-6691.

19

Yang, Y.; Ling, Y. C.; Wang, G. M.; Li, Y. The effect of the hydrogenation temperature on TiO2 nanostructures for photoelectrochemical water oxidation. Eur. J. Inorg. Chem. 2014, 2014, 760-766.

20

Pesci, F. M.; Wang, G. M.; Klug, D. R.; Li, Y.; Cowan, A. J. Efficient suppression of electron-hole recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. J. Phys. Chem. C 2013, 117, 25837-25844.

21

Tan, H. Q.; Zhao, Z.; Niu, M.; Mao, C. Y.; Cao, D. P.; Cheng, D. J.; Feng, P. Y.; Sun, Z. C. A facile and versatile method for preparation of colored TiO2 with enhanced solar- driven photocatalytic activity. Nanoscale 2014, 6, 10216- 10223.

22

Mao, C. Y.; Zuo, F.; Hou, Y.; Bu, X. H.; Feng, P. Y. In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew. Chem., Int. Ed. 2014, 126, 10653-10657.

23

Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Y. Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 51, 6223-6226.

24

Xia, T.; Chen, X. B. Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. A 2013, 1, 2983-2989.

25

Zhou, W.; Li, W.; Wang, J. -Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280-9283.

26

Horikoshi, S.; Minatodani, Y.; Tsutsumi, H.; Uchida, H.; Abe, M.; Serpone, N. Influence of lattice distortion and oxygen vacancies on the UV-driven/microwave-assisted TiO2 photocatalysis. J. Photoch. Photobio. A 2013, 265, 20-28.

27

Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53-229.

28

Li, X.; Yu, J. G.; Low, J.; Fang, Y. P.; Xiao, J.; Chen, X. B. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485-2534.

29

Chen, X. B.; Liu, L.; Huang, F. Q. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861-1885.

30

Chen, X. B.; Liu, L.; Liu, Z.; Marcus, M. A.; Wang, W. -C.; Oyler, N. A.; Grass, M. E.; Mao, B. H.; Glans, P. -A.; Yu, P. Y. et al. Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci. Rep. 2013, 3, 1510.

31

Hamdy, M. S.; Amrollahi, R.; Mul, G. Surface Ti3+-containing (blue) titania: A unique photocatalyst with high activity and selectivity in visible light-stimulated selective oxidation. ACS. Catal. 2012, 2, 2641-2647.

32

Hanawa, T. A comprehensive review of techniques for biofunctionalization of titanium. J. Periodontal Implant Sci. 2011, 41, 263-272.

33

Conesa, J. C.; Soria, J. Reversible titanium(3+) formation by hydrogen adsorption on m/anatase (TiO2) catalysts. J. Phys. Chem. 1982, 86, 1392-1395.

34

Zuo, F.; Wang, L.; Feng, P. Y. Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity. Int. J. Hydrogen Energy 2014, 39, 711-717.

35

Sayed, F. N.; Jayakumar, O. D.; Sasikala, R.; Kadam, R. M.; Bharadwaj, S. R.; Kienle, L.; Schürmann, U.; Kaps, S.; Adelung, R.; Mittal, J. P. et al. Photochemical hydrogen generation using nitrogen-doped TiO2-Pd nanoparticles: Facile synthesis and effect of Ti3+ incorporation. J. Phys. Chem. C 2012, 116, 12462-12467.

36

Howe, R. F.; Gratzel, M. EPR Observation of trapped electrons in colloidal titanium dioxide. J. Phys. Chem. 1985, 89, 4495-4499.

37

Lu, H. Q.; Zhao, B. B.; Pan, R. L.; Yao, J. F.; Qiu, J. H.; Luo, L.; Liu, Y. C. Safe and facile hydrogenation of commercial degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv. 2014, 4, 1128-1132.

38

Teng, F.; Li, M. Y.; Gao, C. T.; Zhang, G. Z.; Zhang, P.; Wang, Y. Q.; Chen, L. L.; Xie, E. Q. Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity. Appl. Catal. B-Environ. 2014, 148-149, 339-343.

39

Maeda, Y.; Iizuka, Y.; Kohyama, M. Generation of oxygen vacancies at a Au/TiO2 perimeter interface during CO oxidation detected by in situ electrical conductance measurement. J. Am. Chem. Soc. 2013, 135, 906-909.

40

Strunk, J.; Vining, W. C.; Bell, A. T. A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on MCM-48. J. Phys. Chem. C 2010, 114, 16937-16945.

41

Yu, X. M.; Kim, B.; Kim, Y. K. Highly enhanced photoactivity of anatase TiO2 nanocrystals by controlled hydrogenation- induced surface defects. ACS. Catal. 2013, 3, 2479-2486.

42

Maeda, K.; Higashi, M.; Siritanaratkul, B.; Abe, R.; Domen, K. SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band. J. Am. Chem. Soc. 2011, 133, 12334-12337.

43

Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026-3033.

44

Ling, Y. C.; Wang, G. M.; Reddy, J.; Wang, C. C.; Zhang, J. Z.; Li, Y. The influence of oxygen content on the thermal activation of hematite nanowires. Angew. Chem., Int. Ed. 2012, 124, 4150-4155.

File
nr-8-12-4061_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 August 2015
Revised: 27 September 2015
Accepted: 29 September 2015
Published: 18 November 2015
Issue date: December 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 21301166, 21201159, 61361166004, and 61176016); Science and Technology Department of Jilin Province (No. 20130522127JH) are gratefully acknowledged. Z. C. S. thanks the support of the "Hundred Talent program" of CAS and open research fund program of State Key Laboratory of Luminescence and Applications (Changchun Institute of Optics, Fine Mechanics and Physics, CAS). Z. Z. thanks for the support of the fellowship from China Scholarship Council. Financial support of the project from the National Science Foundation (No. CHE-1213795, P. Y. F.) is also greatly appreciated.

Return