Journal Home > Volume 9 , Issue 2

In this paper, we report polyfluorene-separated ultra-high purity semiconducting carbon nanotube radio frequency transistors with a self-aligned T-shape gate structure. Because of the ultra-high semiconducting tube purity and self-aligned T-shape gate structure, these transistors showed an excellent direct current and radio frequency performance. In regard to the direct current characteristics, these transistors showed a transconductance up to 40 μS/μm and an excellent current saturation behavior with an output resistance greater than 200 kΩ·μm. In terms of the radio frequency characteristics, an extrinsic maximum oscillation frequency (fmax) of 19 GHz was achieved, which is a record among all kinds of carbon nanotube transistors, and an extrinsic current gain cut-off frequency (fT) of 22 GHz was achieved, which is the highest among transistors based on carbon nanotube networks. Our results take the radio frequency performance of carbon nanotube transistors to a new level and can further accelerate the application of carbon nanotubes for future radio frequency electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Radio frequency transistors based on ultra-high purity semiconducting carbon nanotubes with superior extrinsic maximum oscillation frequency

Show Author's information Yu Cao1,§Yuchi Che1,§Hui Gui2Xuan Cao2Chongwu Zhou1,2( )
Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCA90089USA

§ These authors contributed equally to this work.

Abstract

In this paper, we report polyfluorene-separated ultra-high purity semiconducting carbon nanotube radio frequency transistors with a self-aligned T-shape gate structure. Because of the ultra-high semiconducting tube purity and self-aligned T-shape gate structure, these transistors showed an excellent direct current and radio frequency performance. In regard to the direct current characteristics, these transistors showed a transconductance up to 40 μS/μm and an excellent current saturation behavior with an output resistance greater than 200 kΩ·μm. In terms of the radio frequency characteristics, an extrinsic maximum oscillation frequency (fmax) of 19 GHz was achieved, which is a record among all kinds of carbon nanotube transistors, and an extrinsic current gain cut-off frequency (fT) of 22 GHz was achieved, which is the highest among transistors based on carbon nanotube networks. Our results take the radio frequency performance of carbon nanotube transistors to a new level and can further accelerate the application of carbon nanotubes for future radio frequency electronics.

Keywords: carbon nanotube, ultra-high purity, radio frequency transistors, maximum oscillation frequency, T-shape gate

References(34)

1

Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.

2

Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.

3

Rutherglen, C.; Jain, D.; Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotechnol. 2009, 4, 811–819.

4

Javey, A.; Wang, Q.; Ural, A.; Li, Y. M.; Dai, H. J. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929–932.

5

Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 2001, 1, 453–456.

6

Liu, X. L.; Lee, C.; Zhou, C. W.; Han, J. Carbon nanotube field-effect inverters. Appl. Phys. Lett. 2001, 79, 3329–3331.

7

Ryu, K.; Badmaev, A.; Wang, C.; Lin, A.; Patil, N.; Gomez, L.; Kumar, A.; Mitra, S.; Wong, H. S. P.; Zhou, C. W. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett. 2009, 9, 189–197.

8

Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

9

Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

10

Zhang, J. L; Fu, Y.; Wang, C.; Chen, P. C.; Liu, Z. W.; Wei, W.; Wu, C.; Thompson, M. E.; Zhou, C. W. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett. 2011, 11, 4852–4858.

11

Cao, X.; Chen, H. T.; Gu, X. F.; Liu, B.; Wang, W. L.; Cao, Y.; Wu, F. Q.; Zhou, C. W. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano 2014, 8, 12769–12776.

12

Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.

13

Zhang, J. L.; Gui, H.; Liu, B. L.; Liu, J.; Zhou, C. W. Comparative study of gel-based separated arcdischarge, HiPCO, and CoMoCAT carbon nanotubes for macroelectronic applications. Nano Res. 2013, 6, 906–920.

14

Takahashi, T.; Yu, Z. B.; Chen, K.; Kiriya, D.; Wang, C.; Takei, K.; Shiraki, H.; Chen, T.; Ma, B. W.; Javey, A. Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett. 2013, 13, 5425–5430.

15

Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904.

16

Vuttipittayamongkol, P.; Wu, F. Q.; Chen, H. T.; Cao, X.; Liu, B. L.; Zhou, C. W. Threshold voltage tuning and printed complementary transistors and inverters based on thin films of carbon nanotubes and indium zinc oxide. Nano Res. 2015, 8, 1159–1168.

17

Li, S. D.; Yu, Z.; Yen, S. F.; Tang, W. C.; Burke, P. J. Carbon nanotube transistor operation at 2.6 GHz. Nano Lett. 2004, 4, 753–756.

18

Le Louarn, A.; Kapche, F.; Bethoux, J. M.; Happy, H.; Dambrine, G.; Derycke, V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J. P. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl. Phys. Lett. 2007, 90, 233108.

19

Nougaret, L.; Happy, H.; Dambrine, G.; Derycke, V.; Bourgoin, J. P.; Green, A. A.; Hersam, M. C. 80 GHz field-effect transistors produced using high purity semiconducting singlewalled carbon nanotubes. Appl. Phys. Lett. 2009, 94, 243505.

20

Wang, C.; Badmaev, A.; Jooyaie, A.; Bao, M. Q.; Wang, K. L.; Galatsis, K.; Zhou, C. W. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. ACS Nano 2011, 5, 4169–4176.

21

Che, Y. C.; Badmaev, A.; Jooyaie, A.; Wu, T.; Zhang, J. L.; Wang, C.; Galatsis, K.; Enaya, H. A.; Zhou, C. W. Self-aligned T-gate high-purity semiconducting carbon nanotube RF transistors operated in quasi-ballistic transport and quantum capacitance regime. ACS Nano 2012, 6, 6936–6943.

22

Ding, L.; Wang, Z. X.; Pei, T.; Zhang, Z. Y.; Wang, S.; Xu, H. L.; Peng, F.; Li, Y.; Peng, L. M. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering. ACS Nano 2011, 5, 2512–2519.

23

Che, Y. C.; Lin, Y. C.; Kim, P.; Zhou, C. W. T-gate aligned nanotube radio frequency transistors and circuits with superior performance. ACS Nano 2013, 7, 4343–4350.

24

Steiner, M.; Engel, M.; Lin, Y. M.; Wu, Y. Q.; Jenkins, K.; Farmer, D. B.; Humes, J. J.; Yoder, N. L.; Seo, J. W. T.; Green, A. A. et al. High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl. Phys. Lett. 2012, 101, 053123.

25

Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X. M.; Kim, H. S.; Dawson, D.; Payne, J.; Stuenkel, M.; Zhang, H. et al. High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2009, 9, 1937–1943.

26

Wang, Z. X.; Liang, S. B.; Zhang, Z. Y.; Liu, H. G.; Zhong, H.; Ye, L. H.; Wang, S.; Zhou, W. W.; Liu, J.; Chen, Y. B. et al. Scalable fabrication of ambipolar transistors and radio-frequency circuits using aligned carbon nanotube arrays. Adv. Mater. 2014, 26, 645–652.

27

Chaste, J.; Lechner, L.; Morfin, P.; Fè ve, G.; Kontos, T.; Berroir, J. M.; Glattli, D. C.; Happy, H.; Hakonen, P.; Placais, B. Single carbon nanotube transistor at GHz frequency. Nano Lett. 2008, 8, 525–528.

28

Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.

29

Che, Y. C.; Wang, C.; Liu, J.; Liu, B. L.; Lin, X.; Parker, J.; Beasley, C.; Wong, H. S.; Zhou, C. W. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 2012, 6, 7454–7462.

30

Li, J. H.; Liu, K. H.; Liang, S. B.; Zhou, W. W.; Pierce, M.; Wang, F.; Peng, L. M.; Liu, J. Growth of high-densityaligned and semiconducting-enriched single-walled carbon nanotubes: Decoupling the conflict between density and selectivity. ACS Nano 2014, 8, 554–562.

31

Yeh, C. H.; Lain, Y. W.; Chiu, Y. C.; Liao, C. H.; Moyano, D. R.; Hsu, S. S. H.; Chiu, P. W. Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano 2014, 8, 7663–7670.

32

Badmaev, A.; Che, Y. C.; Li, Z.; Wang, C.; Zhou, C. W. Self-aligned fabrication of graphene RF transistors with T-shaped gate. ACS Nano 2012, 6, 3371–3376.

33

Chen, J. D.; Lin, Z. M. 2.4 GHz high IIP3 and low-noise down-conversion mixer. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, Singapore, 2006, pp 37–40.

34

Wan, Q. Z.; Wang, C. H.; Ma, M. L. A novel 2.4 GHz CMOS up-conversion current-mode mixer. Radioengineering 2009, 18, 532–536.

File
nr-9-2-363_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 August 2015
Revised: 23 September 2015
Accepted: 05 October 2015
Published: 05 November 2015
Issue date: February 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

We would like to acknowledge the collaboration of this research with King Abdul-Aziz City for Science and Technology (KACST) via The Center of Excellence for Green Nanotechnologies (CEGN). We also would like to acknowledge the Center for High Frequency Electronics (CHFE) at UCLA for technical support. We thank Dr. Han Wang at USC and Mr. Minji Zhu at CHFE for help with RF measurements, and we also thank Mr. Jefford J. Humes at NanoIntegris for helpful discussions.

Return