Journal Home > Volume 9 , Issue 2

The strategy of combining highly conductive frameworks with abundant active sites is desirable in the preparation of alternative catalysts to commercial Pt/C for the oxygen reduction reaction (ORR). In this study, N-doped graphene (NG) and carbon nanotubes (CNT) were grown in-situ on Co-containing carbon nanofibers (CNF) to form three-dimensional (3D) interconnected networks. The NG and CNT bound the interlaced CNF together, facilitating electron transfer and providing additional active sites. The 3D interconnected fiber networks exhibited excellent ORR catalytic behavior with an onset potential of 0.924 V (vs. reversible hydrogen electrode) and a higher current density than Pt/C beyond 0.720 V. In addition, the hybrid system exhibited superior stability and methanol tolerance to Pt/C in alkaline media. This method can be extended to the design of other 3D interconnected network architectures for energy storage and conversion applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction

Show Author's information Qi Shi1Yingde Wang1( )Zhongmin Wang2Yongpeng Lei3( )Bing Wang1Nan Wu1Cheng Han1Song Xie1Yanzi Gou1
Science and Technology on Advanced Ceramic Fibers and Composites LaboratoryNational University of Defense TechnologyChangsha410073China
Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilin541004China
College of Basic EducationNational University of Defense TechnologyChangsha410073China

Abstract

The strategy of combining highly conductive frameworks with abundant active sites is desirable in the preparation of alternative catalysts to commercial Pt/C for the oxygen reduction reaction (ORR). In this study, N-doped graphene (NG) and carbon nanotubes (CNT) were grown in-situ on Co-containing carbon nanofibers (CNF) to form three-dimensional (3D) interconnected networks. The NG and CNT bound the interlaced CNF together, facilitating electron transfer and providing additional active sites. The 3D interconnected fiber networks exhibited excellent ORR catalytic behavior with an onset potential of 0.924 V (vs. reversible hydrogen electrode) and a higher current density than Pt/C beyond 0.720 V. In addition, the hybrid system exhibited superior stability and methanol tolerance to Pt/C in alkaline media. This method can be extended to the design of other 3D interconnected network architectures for energy storage and conversion applications.

Keywords: carbon nanotubes, oxygen reduction, N-doped graphene, in-situ grown, three-dimensional (3D) interconnected fiber networks

References(55)

1

Li, L.; Hu, L. P.; Li, J.; Wei, Z. D. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells. Nano Res. 2015, 8, 418–440.

2

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

3

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

4

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

5

Trogadas, P.; Fuller, T. F.; Strasser, P. Carbon as catalyst and support for electrochemical energy conversion. Carbon 2014, 75, 5–42.

6

Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855.

7

Lin, Z. Y.; Waller, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 2013, 53, 130–136.

8

Yang, S. B.; Zhi, L. J.; Tang, K.; Feng, X. L.; Maier, J.; Mü llen, K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 2012, 22, 3634–3640.

9

Wang, S. Y.; Zhang, L. P.; Xia, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 51, 4209–4212.

10

Dou, S.; Shen, A. L.; Tao, L.; Wang, S. Y. Molecular doping of graphene as metal-free electrocatalyst for oxygen reduction reaction. Chem. Commun. 2014, 50, 10672–10675.

11

Zhang, Y.; Zhuang, X. D.; Su, Y. Z.; Zhang, F.; Feng, X. L. Polyaniline nanosheet derived B/N co-doped carbon nanosheets as efficient metal-free catalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7742–7746.

12

Yang, S. B.; Feng, X. L.; Wang, X. C.; Müllen, K. Graphenebased carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem., Int. Ed. 2011, 50, 5339–5343.

13

Zhao, A. Q.; Masa, J.; Schuhmann, W.; Xia, W. Activation and stabilization of nitrogen-doped carbon nanotubes as electrocatalysts in the oxygen reduction reaction at strongly alkaline conditions. J. Phys. Chem. C 2013, 117, 24283–24291.

14

Wang, S. Y.; Iyyamperumal, E.; Roy, A.; Xue, Y. H.; Yu, D. S.; Dai, L. M. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by co-doping with boron and nitrogen. Angew. Chem., Int. Ed. 2011, 50, 11756–11760.

15

Liu, D.; Zhang, X. P.; Sun, Z. C.; You, T. Y. Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction. Nanoscale 2013, 5, 9528–9531.

16

Kumar, P. S.; Sundaramurthy, J.; Subramanian, S.; Babu, V. J.; Singh, G.; Allakhverdiev, S. I.; Ramakrishna, S. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ. Sci. 2014, 7, 3192–3222.

17

Inagaki, M.; Yang, Y.; Kang, F. Y. Carbon nanofibers prepared via electrospinning. Adv. Mater. 2012, 24, 2547–2566.

18

Guo, L. P.; Bai, J.; Liang, H. O.; Li, C. P.; Sun, W. Y.; Meng, Q. R. Preparation and application of carbon nanofiberssupported palladium nanoparticles catalysts based on electrospinning. J. Inorg. Mater. 2014, 29, 814–820.

19

Zhang, C. L.; Yu, S. H. Nanoparticles meet electrospinning: Recent advances and future prospects. Chem. Soc. Rev. 2014, 43, 4423–4448.

20

Wang, Y. D.; Han, C.; Zheng, D. C.; Lei, Y. P. Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition. J. Mater. Chem. A 2014, 2, 9607–9612.

21

Wang, H. G.; Yuan, S.; Ma, D. L.; Zhang, X. B.; Yan, J. M. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance. Energy Environ. Sci. 2015, 8, 1660–1681.

22

Li, X. H.; Antonietti, M. Polycondensation of boron- and nitrogen-codoped holey graphene monoliths from molecules: Carbocatalysts for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 4572–4576.

23

Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Networker, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768–771.

24

Dallmeyer, I.; Lin, L. T.; Li, Y. J.; Ko, F.; Kadla, J. F. Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning. Macromol. Mater. Eng. 2014, 299, 540–551.

25

Cheng, Y. L.; Huang, L.; Xiao, X.; Yao, B.; Yuan, L. Y.; Li, T. Q.; Hu, Z. M.; Wang, B.; Wan, J.; Zhou, J. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 2015, 15, 66–74.

26

Ye, T. N.; Lv, L. B.; Li, X. H.; Xu, M.; Chen, J. S. Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst. Angew. Chem., Int. Ed. 2014, 53, 6905–6909.

27

Park, M.; Jung, Y. J.; Kim, J.; Lee, H. I.; Cho, J. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery. Nano Lett. 2013, 13, 4833–4839.

28

Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857.

29

Zhang, B.; Huang, J. Q.; Kim, J. K. Ultrafine amorphous SnOx embedded in carbon nanofiber/carbon nanotube composites for Li-ion and Na-ion batteries. Adv. Funct. Mater. 2015, 25, 5222–5228.

30

Lü, Y. Y.; Wang, Y. T.; Li, H. L.; Lin, Y.; Jiang, Z. Y.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 13604–13611.

31

Wang, B.; Wang, Y. D.; Lei, Y. P.; Wu, N.; Gou, Y. Z.; Han, C.; Fang, D. Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. J. Mater. Chem. A 2014, 2, 20873–20881.

32

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

33

Liu, Z. W.; Peng, F.; Wang, H. J.; Yu, H.; Zheng, W. X.; Yang, J. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem., Int. Ed. 2011, 50, 3257–3261.

34

Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.

35

Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.

36

Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2014, 53, 4372–4376.

37

Huang, D. K.; Luo, Y. P.; Li, S. H.; Zhang, B. Y.; Shen, Y.; Wang, M. K. Active catalysts based on cobalt oxide@cobalt/ N–C nanocomposites for oxygen reduction reaction in alkaline solutions. Nano Res. 2014, 7, 1054–1064.

38

Jagadeesh, R. V.; Junge, H.; Pohl, M. M.; Radnik, J.; Brü ckner, A.; Beller, M. Selective oxidation of alcohols to esters using heterogeneous Co3O4–N@C catalysts under mild conditions. J. Am. Chem. Soc. 2013, 135, 10776–10782.

39

Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.

40

Yan, M.; Song, W.; Chen, Z. H. In situ growth of a carbon interphase between carbon fibres and a polycarbosilanederived silicon carbide matrix. Carbon 2011, 49, 2869–2872.

41

Wu, N.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Han, C. Flexible N-doped TiO2/C ultrafine fiber mat and its photocatalytic activity under simulated sunlight. Appl. Surf. Sci. 2014, 319, 136–142.

42

Xie, S.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Guo, Y. Z.; Fang, D. A simply prepared flexible SiBOC ultrafine fiber mat with enhanced high-temperature stability and chemical resistance. RSC Adv. 2015, 5, 64911–64917.

43

Choi, C. H.; Park, S. H.; Woo, S. I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 2012, 6, 7084–7091.

44

Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem., Int. Ed. 2013, 52, 3110–3116.

45

Kang, Y.; Chu, Z. Y.; Zhang, D. J.; Li, G. Y.; Jiang, Z. H.; Cheng, H. F.; Li, X. D. Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 2013, 61, 200–208.

46

Wood, K. N.; O' Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 2014, 7, 1212–1249.

47

Artyushkova, K.; Kiefer, B.; Halevi, B.; Knop-Gericke, A.; Schlogl, R.; Atanassov, P. Density functional theory calculations of XPS binding energy shift for nitrogencontaining graphene-like structures. Chem. Commun. 2013, 49, 2539–2541.

48

Lee, J. S.; Park, G. S.; Kim, S. T.; Liu, M. L.; Cho, J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam. Angew. Chem., Int. Ed. 2013, 52, 1026–1030.

49

Saadi, F. H.; Carim, A. I.; Verlage, E.; Hemminger, J. C.; Lewis, N. S.; Soriaga, M. P. CoP as an acid-stable active electrocatalyst for the hydrogen-evolution reaction: Electrochemical synthesis, interfacial characterization and performance evaluation. J. Phys. Chem. C 2014, 118, 29294–29300.

50

Liang, J.; Du, X.; Gibson, C.; Du, X. W.; Qiao, S. Z. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 2013, 25, 6226–6231.

51

Liang, J.; Zhou, R. F.; Chen, X. M.; Tang, Y. H.; Qiao, S. Z. Fe–N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv. Mater. 2014, 26, 6074–6079.

52

Kim, M.; Nam, D. H.; Park, H. Y.; Kwon, C.; Eom, K.; Yoo, S. J.; Jang, J. H.; Kim, H. J.; Cho, E.; Kwon, H. Cobalt–carbon nanofibers as an efficient support-free catalyst for oxygen reduction reaction with a systematic study of active site formation. J. Mater. Chem. A 2015, 3, 14284–14290.

53

Wu, J. F.; Yuan, X. Z.; Martin, J. J.; Wang, H. J.; Zhang, J. J.; Shen, J.; Wu, S. H.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power. Sources 2008, 184, 104–119.

54

Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem., Int. Ed. 2012, 51, 3892–3896.

55

Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

File
nr-9-2-317_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 July 2015
Revised: 30 September 2015
Accepted: 04 October 2015
Published: 10 December 2015
Issue date: February 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 51203182 and 51173202), Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201312), Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology) (No. 1210908-01-K), Research Project of NUDT (No. JC13-01-05), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and Aid Program for Innovative Group of National University of Defense Technology.

Return