Journal Home > Volume 9 , Issue 2

Molecular dynamics simulations have been used to investigate the confinement packing characteristics of small hydrophilic (N-acetyl-glycine-methylamide, Nagma) and hydrophobic (N-acetyl-leucine-methylamide, Nalma) biomolecules in large diameter single-wall carbon nanotubes (SWCNTs). We find that hydrophilic biomolecules easily fill the nanotube and self organize into a geometrical configuration which reminds the water structural organization under SWCNT confinement. The packing of hydrophilic biomolecules inside the cylinder confines all water molecules in its core, which enhances their mobility. Conversely, hydrophobic biomolecules accommodate into the nanotubes with a trend for homogeneous filling, which generate unstable small pockets of water and drive toward a state of dehydration. These results shed light on key parameters important for the encapsulation of biomolecules with direct relevance for long-term storage and prevention of degradation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nano-confinement of biomolecules: Hydrophilic confinement promotes structural order and enhances mobility of water molecules

Show Author's information Bachir Aoun1Daniela Russo2,3( )
Argonne National LaboratoryChicagoIL60439USA
CNR-IOMc/o Institut Laue-Langevin38400Grenoble, France
Institut Lumière MatièreUniversité de Lyon69622Lyon, France

Abstract

Molecular dynamics simulations have been used to investigate the confinement packing characteristics of small hydrophilic (N-acetyl-glycine-methylamide, Nagma) and hydrophobic (N-acetyl-leucine-methylamide, Nalma) biomolecules in large diameter single-wall carbon nanotubes (SWCNTs). We find that hydrophilic biomolecules easily fill the nanotube and self organize into a geometrical configuration which reminds the water structural organization under SWCNT confinement. The packing of hydrophilic biomolecules inside the cylinder confines all water molecules in its core, which enhances their mobility. Conversely, hydrophobic biomolecules accommodate into the nanotubes with a trend for homogeneous filling, which generate unstable small pockets of water and drive toward a state of dehydration. These results shed light on key parameters important for the encapsulation of biomolecules with direct relevance for long-term storage and prevention of degradation.

Keywords: protein folding, drug delivery, carbon nanotube, nano-confinement, hydration water

References(26)

1

Cass, T.; Ligler, F. S. Immobilized Biomolecules in Analysis: A Practical Approach; Oxford University Press: Oxford, 1998.

2

Imasaka, K.; Kato, Y.; Suehiro, J. Enhancement of microplasmabased water-solubilization of single-walled carbon nanotubes using gas bubbling in water. Nanotechnology 2007, 18, 335602.

3

Wallace, E. J.; Sansom, M. S. P. Carbon nanotube selfassembly with lipids and detergent: A molecular dynamics study. Nanotechnology 2009, 20, 045101.

4

Pantarotto, D.; Briand, J. P.; Prato, M.; Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004, 16–17.

5

Kam, N. W. S.; Dai, H. J. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc. 2005, 127, 6021–6026.

6

Zhang, S. Q.; Cheung, M. S. Manipulating biopolymer dynamics by anisotropic nanoconfinement. Nano Lett. 2007, 7, 3438–3442.

7

Sorin, E. J.; Pande, V. S. Nanotube confinement denatures protein helices. J. Am. Chem. Soc. 2006, 128, 6316–6317.

8

O'Brien, E. P.; Stan, G.; Thirumalai, D.; Brooks, B. R. Factors governing helix formation in peptides confined to carbon nanotubes. Nano Lett. 2008, 8, 3702–3708.

9

Trzaskowski, B.; Jalbout, A. F.; Adamowicz, L. Molecular dynamics studies of protein-fragment models encapsulated into carbon nanotubes. Chem. Phys. Lett. 2006, 430, 97–100.

10

Liu, Z.; Yanagi, K.; Suenaga, K.; Kataura, H.; Lijima, S. Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nat. Nanotechnol. 2007, 2, 422–425.

11

Kolesnikov, A. I.; Zanotti, J. M.; Loong, C. K.; Thiyagarajan P.; Moravsky, A. P.; Loutfy, R. O.; Burnham, C. J. Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement. Phys. Rev. Lett. 2004, 93, 035503.

12

Paineau, E.; Albouy, P. A.; Rouzière, S.; Orecchini, A.; Rols, S.; Launois, P. X-ray scattering determination of the structure of water during carbon nanotube filling. Nano Lett. 2013, 13, 1751–1756.

13

Russo, D.; Ollivier, J.; Teixeira, J. Water hydrogen bond analysis on hydrophilic and hydrophobic biomolecule sites. Phys. Chem. Chem. Phys. 2008, 10, 4968–4974.

14

Russo, D.; Baglioni, P.; Peroni, E.; Teixeira, J. Hydration water dynamics of a completely hydrophobic oligopeptide. Chem. Phys. 2003, 292, 235–245.

15

Russo, D.; Hura, G. L.; Copley, J. R. D. Effects of hydration water on protein methyl group dynamics in solution. Phys. Rev. E 2007, 75, 040902.

16

Russo, D.; Teixeira, J.; Ollivier, J. The impact of hydration water on the dynamics of side chains of hydrophobic peptides: From dry powder to highly concentrated solutions. J. Chem. Phys. 2009, 130, 235101.

17

Russo, D. The impact of kosmotropes and chaotropes on bulk and hydration shell water dynamics in a model peptide solution. Chem. Phys. 2008, 345, 200–211.

18

Russo, D.; Copley, J. R. D.; Ollivier, J.; Teixeira, J. On the behaviour of water hydrogen bonds at biomolecular sites: Dependences on temperature and on network dimensionality. J. Mol. Struct. 2010, 972, 81–86.

19

Russo, D.; Hura, G.; Head-Gordon, T. Hydration dynamics near a model protein surface. Biophys. J. 2004, 86, 1852–1862.

20

Hura, G.; Sorenson, J. M.; Glaeser, R. M.; Head-Gordon, T. Solution X-ray scattering as a probe of hydration-dependent structuring of aqueous solutions. Perspect. Drug Discov. Design 1999, 17, 97–118.

21

Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802.

22

MacKerell, A. D. Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L. Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616.

23

MacKerell, A. D. Jr.; Feig, M.; Brooks, C. L. 3rd. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004, 25, 1400–1415.

24

Sisan, T. B.; Lichter, S. Solitons transport water through narrow carbon nanotubes. Phys. Rev. Lett. 2014, 112, 044501.

25

Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Lett. 2010, 10, 4067–4073.

26

Whitby, M.; Cagnon, L.; Thanou, M.; Quirke, N. Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 2008, 8, 2632–2637.

File
nr-9-2-273_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 May 2015
Revised: 28 September 2015
Accepted: 04 October 2015
Published: 13 November 2015
Issue date: February 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgement

D. R. thanks ARC-Santé and region Rhone-Alpes (France), for financial support with the Nanofold project. D. R. is grateful to Dr. Jose Teixeira (LLB, CNRS France) and Dr. Alessandro Cunsolo for discussions and suggestions. D. R. is grateful to Dr. Scott Brown (Sunovion Pharmaceuticals, USA) for scientific discussion and to have reviewed the manuscript to improve the scientific language. B. A. gratefully acknowledges the computing resources provided on Blues and Fusion high-performance computing clusters operated by the Laboratory Computing Resource Center at Argonne National Laboratory.

Return