Journal Home > Volume 8 , Issue 12

A frontier topic in nanotechnology is the realization of multifunctional nanoparticles (NPs) via the appropriate combination of different elements of the periodic table. The coexistence of Fe and Ag in the same nanostructure, for instance, is interesting for nanophotonics, nanomedicine, and catalysis. However, alloying of Fe and Ag is inhibited for thermodynamic reasons. Here, we describe the synthesis of Fe-doped Ag NPs via laser ablation in liquid solution, bypassing thermodynamics constraints. These NPs have an innovative structure consisting of a scaffold of face-centered cubic metal Ag alternating with disordered Ag–Fe alloy domains, all arranged in a truffle-like morphology. The Fe–Ag NPs exhibit the plasmonic properties of Ag and the magnetic response of Fe-containing phases, and the surface of the Fe–Ag NPs can be functionalized in one step with thiolated molecules. Taking advantage of the multiple properties of Fe–Ag NPs, the magnetophoretic amplification of plasmonic properties is demonstrated with proof-of-concept surface-enhanced Raman scattering and photothermal heating experiments. The synthetic approach is of general applicability and virtually permits the preparation of a large variety of multi-element NPs in one step.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Laser generation of iron-doped silver nanotruffles with magnetic and plasmonic properties

Show Author's information Vincenzo Amendola1( )Stefano Scaramuzza1Stefano Agnoli1Gaetano Granozzi1Moreno Meneghetti1Giulio Campo2Valentina Bonanni2Francesco Pineider2Claudio Sangregorio2,3Paolo Ghigna4Stefano Polizzi5Piero Riello5Stefania Fiameni6Luca Nodari6
Department of Chemical SciencesUniversità di PadovaPadovaI-35131Italy
Department of ChemistryUniversity of Florence & INSTMFlorenceI-50019Italy
CCOM-CNRSesto FiorentinoFlorenceI-50019Italy
Department of ChemistryUniversità di PaviaPaviaI-27100Italy
Department of Molecular Sciences and NanosystemsUniversità Ca' Foscari Venezia and INSTM UdR VeneziaVenezia-MestreI-30172Italy
CNR–IENIPadovaI-35127Italy

Abstract

A frontier topic in nanotechnology is the realization of multifunctional nanoparticles (NPs) via the appropriate combination of different elements of the periodic table. The coexistence of Fe and Ag in the same nanostructure, for instance, is interesting for nanophotonics, nanomedicine, and catalysis. However, alloying of Fe and Ag is inhibited for thermodynamic reasons. Here, we describe the synthesis of Fe-doped Ag NPs via laser ablation in liquid solution, bypassing thermodynamics constraints. These NPs have an innovative structure consisting of a scaffold of face-centered cubic metal Ag alternating with disordered Ag–Fe alloy domains, all arranged in a truffle-like morphology. The Fe–Ag NPs exhibit the plasmonic properties of Ag and the magnetic response of Fe-containing phases, and the surface of the Fe–Ag NPs can be functionalized in one step with thiolated molecules. Taking advantage of the multiple properties of Fe–Ag NPs, the magnetophoretic amplification of plasmonic properties is demonstrated with proof-of-concept surface-enhanced Raman scattering and photothermal heating experiments. The synthetic approach is of general applicability and virtually permits the preparation of a large variety of multi-element NPs in one step.

Keywords: laser ablation, silver nanoparticles, iron nanoparticles, laser ablation synthesis in solution (LASiS) nanoalloys

References(76)

1

Lee, D. E.; Koo, H.; Sun, I. C.; Ryu, J. H.; Kim, K.; Kwon, I. C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 2012, 41, 2656-2672.

2

Cheng, Z. L.; Al Zaki, A.; Hui, J. Z.; Muzykantov, V. R.; Tsourkas, A. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science 2012, 338, 903-910.

3

Liu, K. S.; Jiang, L. Multifunctional integration: From biological to bio-inspired materials. ACS Nano 2011, 5, 6786-6790.

4

Sun, Y. H.; Jiang, L.; Zhong, L. B.; Jiang, Y. Y.; Chen, X. D. Towards active plasmonic response devices. Nano Res. 2015, 8, 406-417.

5

Armelles, G.; Cebollada, A.; García-Martín, A.; González, M. U. Magnetoplasmonics: Combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 2013, 1, 2.

6

Hao, R.; Xing, R. J.; Xu, Z. C.; Hou, Y. L.; Gao, S.; Sun, S. H. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729-2742.

7

Peng, S.; Lei, C. H.; Ren, Y.; Cook, R. E.; Sun, Y. G. Plasmonic/magnetic bifunctional nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 3158-3163.

8

Jin, R. C.; Nobusada, K. Doping and alloying in atomically precise gold nanoparticles. Nano Res. 2014, 7, 285-300.

9

Shen, J. L.; Su, J.; Yan, J.; Zhao, B.; Wang, D. F.; Wang, S. Y.; Li, K.; Liu, M. M.; He, Y.; Mathur, S. et al. Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification. Nano Res. 2015, 8, 731-742.

10

García, S.; Zhang, L.; Piburn, G. W.; Henkelman, G.; Humphrey, S. M. Microwave synthesis of classically immiscible rhodium-silver and rhodium-gold alloy nanoparticles: Highly active hydrogenation catalysts. ACS Nano 2014, 8, 11512-11521.

11

González-Díaz, J. B.; García-Martín, A.; García-Martín, J. M.; Cebollada, A.; Armelles, G.; Sepúlveda, B.; Alaverdyan, Y.; Käll, M. Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small 2008, 4, 202-205.

12

Bonanni, V.; Bonetti, S.; Pakizeh, T.; Pirzadeh, Z.; Chen, J. N.; Nogués, J.; Vavassori, P.; Hillenbrand, R.; Åkerman, J.; Dmitriev, A. Designer magnetoplasmonics with nickel nanoferromagnets. Nano Lett. 2011, 11, 5333-5338.

13

Pineider, F.; Campo, G.; Bonanni, V.; de Julián Fernández, C.; Mattei, G.; Caneschi, A.; Gatteschi, D.; Sangregorio, C. Circular magnetoplasmonic modes in gold nanoparticles. Nano Lett. 2013, 13, 4785-4789.

14

Suntivich, J.; Xu, Z. C.; Carlton, C. E.; Kim, J.; Han, B.; Lee, S. W.; Bonnet, N.; Marzari, N.; Allard, L. F.; Gasteiger, H. A. et al. Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. J. Am. Chem. Soc. 2013, 135, 7985-7991.

15

Amendola, V.; Scaramuzza, S.; Litti, L.; Meneghetti, M.; Zuccolotto, G.; Rosato, A.; Nicolato, E.; Marzola, P.; Fracasso, G.; Anselmi, C. et al. Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small 2014, 10, 2476-2486.

16

Xu, C. J.; Wang, B. D.; Sun, S. H. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 2009, 131, 4216-4217.

17

Sotiriou, G. A.; Visbal-Onufrak, M. A.; Teleki, A.; Juan, E. J.; Hirt, A. M.; Pratsinis, S. E.; Rinaldi, C. Thermal energy dissipation by SiO2-coated plasmonic-superparamagnetic nanoparticles in alternating magnetic fields. Chem. Mater. 2013, 25, 4603-4612.

18

Chudasama, B.; Vala, A. K.; Andhariya, N.; Upadhyay, R. V.; Mehta, R. V. Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res. 2009, 2, 955-965.

19

Zhai, Y. M.; Han, L.; Wang, P.; Li, G. P.; Ren, W.; Liu, L.; Wang, E. K.; Dong, S. J. Superparamagnetic plasmonic nanohybrids: Shape-controlled synthesis, TEM-induced structure evolution, and efficient sunlight-driven inactivation of bacteria. ACS Nano 2011, 5, 8562-8570.

20

Bogani, L.; Cavigli, L.; de Julián Fernández, C.; Mazzoldi, P.; Mattei, G.; Gurioli, M.; Dressel, M.; Gatteschi, D. Photocoercivity of nano-stabilized Au: Fe superparamagnetic nanoparticles. Adv. Mater. 2010, 22, 4054-4058.

21

Sarina, S.; Zhu, H. Y.; Jaatinen, E.; Xiao, Q.; Liu, H. W.; Jia, J. F.; Chen, C.; Zhao, J. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc. 2013, 135, 5793-5801.

22

Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A general approach to noble metal-metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem. Mater. 2010, 22, 3277-3282.

23

Wang, C.; Chen, J. C.; Zhou, X. R.; Li, W.; Liu, Y.; Yue, Q.; Xue, Z. T.; Li, Y. H.; Elzatahry, A. A.; Deng, Y. H. et al. Magnetic yolk-shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Res. 2015, 8, 238-245.

24

Araújo, J. E.; Lodeiro, C.; Capelo, J. L.; Rodríguez-González, B.; dos Santos, A. A.; Santos, H. M.; Fernández-Lodeiro, J. Novel nanocomposites based on a strawberry-like gold- coated magnetite (Fe@Au) for protein separation in multiple myeloma serum samples. Nano Res. 2015, 8, 1189-1198.

25

Lou, L.; Yu, K.; Zhang, Z. L.; Huang, R.; Zhu, J. Z.; Wang, Y. T.; Zhu, Z. Q. Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles. Nano Res. 2012, 5, 272-282.

26

Kadasala, N. R.; Wei, A. Trace detection of tetrabromobisphenol A by SERS with DMAP-modified magnetic gold nanoclusters. Nanoscale 2015, 7, 10931-10935.

27

La Porta, A.; Sánchez-Iglesias, A.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L. M. Multifunctional self- assembled composite colloids and their application to SERS detection. Nanoscale 2015, 7, 10377-10381.

28

Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845-910.

29

LaGrow, A. P.; Knudsen, K. R.; AlYami, N. M.; Anjum, D. H.; Bakr, O. M. Effect of precursor ligands and oxidation state in the synthesis of bimetallic nano-alloys. Chem. Mater. 2015, 27, 4134-4141.

30

Lin, F. H.; Chen, W.; Liao, Y. H.; Doong, R. A.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223-1232.

31

Zeng, H. B.; Du, X. W.; Singh, S. C.; Kulinich, S. A.; Yang, S. K.; He, J. P.; Cai, W. P. Nanomaterials via laser ablation/ irradiation in liquid: A review. Adv. Funct. Mater. 2012, 22, 1333-1353.

32

Amendola, V.; Meneghetti, M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2013, 15, 3027-3046.

33

Amendola, V.; Meneghetti, M.; Bakr, O. M.; Riello, P.; Polizzi, S.; Anjum, D. H.; Fiameni, S.; Arosio, P.; Orlando, T.; de Julian Fernandez, C. et al. Coexistence of plasmonic and magnetic properties in Au89Fe11 nanoalloys. Nanoscale 2013, 5, 5611-5619.

34

Amendola, V.; Scaramuzza, S.; Agnoli, S.; Polizzi, S.; Meneghetti, M. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys. Nanoscale 2014, 6, 1423-1433.

35

Amendola, V.; Bakr, O. M.; Stellacci, F. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics 2010, 5, 85-97.

36

Swartzendruber, L. The Ag-Fe (silver-iron) system. J. Phase. Equilib. 1984, 5, 560-564.

37

Wan, H.; Tsoukatos, A.; Hadjipanayis, G. C.; Li, Z. G.; Liu, J. Direct evidence of phase separation in as-deposited Fe(Co)-Ag films with giant magnetoresistance. Phys. Rev. B 1994, 49, 1524-1527.

38

Kataoka, N.; Sumiyama, K.; Nakamura, Y. Magnetic properties of high-concentration Fe-Ag alloys produced by vapour quenching. J. Phys. F: Met. Phys. 1985, 15, 1405-1411.

39

Kataoka, N.; Sumiyama, K.; Nakamura, Y. Nonequilibrium crystalline Fe-Ag alloys vapour-quenched on liquid-nitrogen- cooled substrates. J. Phys. F: Met. Phys. 1988, 18, 1049-1056.

40

Shi, Z. J.; Wang, T.; Lin, H. Y.; Wang, X. H.; Ding, J. J.; Shao, M. W. Excellent surface-enhanced Raman scattering (SERS) based on AgFeO2 semiconductor nanoparticles. Nanoscale 2013, 5, 10029-10033.

41

Han, X. X.; Schmidt, A. M.; Marten, G.; Fischer, A.; Weidinger, I. M.; Hildebrandt, P. Magnetic silver hybrid nanoparticles for surface-enhanced resonance Raman spectroscopic detection and decontamination of small toxic molecules. ACS Nano 2013, 7, 3212-3220.

42

Mahmoudi, M.; Serpooshan, V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 2012, 6, 2656-2664.

43

Murphy, C. J. Sustainability as an emerging design criterion in nanoparticle synthesis and applications. J. Mater. Chem. 2008, 18, 2173-2176.

44

Compagnini, G.; Scalisi, A. A.; Puglisi, O. Ablation of noble metals in liquids: A method to obtain nanoparticles in a thin polymeric film. Phys. Chem. Chem. Phys. 2002, 4, 2787-2791.

45

Amendola, V.; Riello, P.; Meneghetti, M. Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents. J Phys. Chem. C 2011, 115, 5140-5146.

46

Amendola, V.; Polizzi, S.; Meneghetti, M. Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir 2007, 23, 6766-6770.

47

Amendola, V.; Riello, P.; Polizzi, S.; Fiameni, S.; Innocenti, C.; Sangregorio, C.; Meneghetti, M. Magnetic iron oxide nanoparticles with tunable size and free surface obtained via a "green" approach based on laser irradiation in water. J. Mater. Chem. 2011, 21, 18665-18673.

48

Santillán, J. M. J.; van Raap, M. B. F.; Zélis, P. M.; Coral, D.; Muraca, D.; Schinca, D. C.; Scaffardi, L. B. Ag nanoparticles formed by femtosecond pulse laser ablation in water: Self- assembled fractal structures. J. Nanop. Res. 2015, 17, 86.

49

Santillán, J. M. J.; Scaffardi, L. B.; Schinca, D. C. Quantitative optical extinction-based parametric method for sizing a single core-shell Ag-Ag2O nanoparticle. J. Phys. D 2011, 44, 105104.

50

Lim, J.; Majetich, S. A. Composite magnetic-plasmonic nanoparticles for biomedicine: Manipulation and imaging. Nano Today 2013, 8, 98-113.

51
Scaramuzza, S.; Agnoli, S.; Amendola, V. Metastable alloy nanoparticles, metal-oxide nanocrescents and nanoshells generated by laser ablation in liquid solution: Influence of the chemical environment on structure and composition. Phys. Chem. Chem. Phys., in press, DOI: 10.1039/C5CP00279F.https://doi.org/10.1039/C5CP00279F
DOI
52

Maenosono, S.; Lee, J.; Dao, A. T. N.; Mott, D. Peak shape analysis of Ag 3d core-level X-ray photoelectron spectra of Au@Ag core-shell nanoparticles using an asymmetric Gaussian-Lorentzian mixed function. Surf. Interface Anal. 2012, 44, 1611-1614.

53

Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564-1574.

54

Naitabdi, A.; Ono, L. K.; Behafarid, F.; Cuenya, B. R. Thermal stability and segregation processes in self-assembled size- selected AuxFe1-x nanoparticles deposited on TiO2 (110): Composition effects. J. Phys. Chem. C 2009, 113, 1433- 1446.

55

Santhi, K.; Thirumal, E.; Karthick, S. N.; Kim, H. J.; Narayanan, V.; Stephen, A. Structural and magnetic investigations on metastable Ag-Fe nanophase alloy. J. Alloys Compounds 2013, 557, 172-178.

56

Lebugle, A.; Axelsson, U.; Nyholm, R.; Mårtensson, N. Experimental L and M core level binding energies for the metals 22Ti to 30Zn. Phys. Scripta 1981, 23, 825-827.

57

Alonso, J.; Fdez-Gubieda, M.; Svalov, A.; Meneghini, C.; Orue, I. Effects of thermal annealing on the magnetic interactions in nanogranular Fe-Ag thin films. J. Alloys Compounds 2012, 536, S271-S276.

58

Wang, J. Q.; Xiao, G. Transition-metal granular solids: Microstructure, magnetic properties, and giant magnetoresistance. Phys. Rev. B 1994, 49, 3982-3996.

59

Binns, C.; Maher, M. J.; Pankhurst, Q. A.; Kechrakos, D.; Trohidou, K. N. Magnetic behavior of nanostructured films assembled from preformed Fe clusters embedded in Ag. Phys. Rev. B 2002, 66, 184413.

60

Malviya, K. D.; Chattopadhyay, K. Synthesis and mechanism of composition and size dependent morphology selection in nanoparticles of Ag-Cu alloys processed by laser ablation under liquid medium. J. Phys. Chem. C 2014, 118, 13228-13237.

61

Yudanov, I. V.; Metzner, M.; Genest, A.; Rösch, N. Size- dependence of adsorption properties of metal nanoparticles: A density functional study on palladium nanoclusters. J. Phys. Chem. C 2008, 112, 20269-20275.

62

Panizon, E.; Bochicchio, D.; Rossi, G.; Ferrando, R. Tuning the structure of nanoparticles by small concentrations of impurities. Chem. Mater. 2014, 26, 3354-3356.

63

Peng, Y.; Wang, F.; Wang, Z. R.; Alsayed, A. M.; Zhang, Z. X.; Yodh, A. G.; Han, Y. L. Two-step nucleation mechanism in solid-solid phase transitions. Nat. Mater. 2015, 14, 101-108.

64

Wagener, P.; Ibrahimkutty, S.; Menzel, A.; Plech, A.; Barcikowski, S. Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Phys. Chem. Chem. Phys. 2013, 15, 3068-3074.

65

Compagnini, G.; Messina, E.; Puglisi, O.; Nicolosi, V. Laser synthesis of Au/Ag colloidal nano-alloys: Optical properties, structure and composition. Appl. Surf. Sci. 2007, 254, 1007-1011.

66

Tiedemann, D.; Taylor, U.; Rehbock, C.; Jakobi, J.; Klein, S.; Kues, W. A.; Barcikowski, S.; Rath, D. Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes. Analyst 2014, 139, 931-942.

67

Capelo, R. G.; Leppert, L.; Albuquerque, R. Q. The concept of localized atomic mobility: Unraveling properties of nanoparticles. J. Phys. Chem. C 2014, 118, 21647-21654.

68

Link, S.; Burda, C.; Nikoobakht, B.; El-Sayed, M. A. Laser- induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 2000, 104, 6152-6163.

69

Andrews, M. P.; O'Brien, S. C. Gas-phase "molecular alloys" of bulk immiscible elements: Iron-silver (FexAgy). J. Phys. Chem. 1992, 96, 8233-8241.

70

Amendola, V.; Meneghetti, M.; Granozzi, G.; Agnoli, S.; Polizzi, S.; Riello, P.; Boscaini, A.; Anselmi, C.; Fracasso, G.; Colombatti, M. et al. Top-down synthesis of multifunctional iron oxide nanoparticles for macrophage labelling and manipulation. J. Mater. Chem. 2011, 21, 3803-3813.

71

McCarty, K. F.; Monti, M.; Nie, S.; Siegel, D. A.; Starodub, E.; El Gabaly, F.; McDaniel, A. H.; Shavorskiy, A.; Tyliszczak, T.; Bluhm, H. et al. Oxidation of magnetite(100) to hematite observed by in situ spectroscopy and microscopy. J. Phys. Chem. C 2014, 118, 19768-19777.

72

Enzo, S.; Polizzi, S.; Benedetti, A. Applications of fitting techniques to the Warren-Averbach method for X-ray line broadening analysis. Z. Kristallogr. 1985, 170, 275-287.

73

Riello, P.; Canton, P.; Fagherazzi, G. Quantitative phase analysis in semicrystalline materials using the Rietveld method. J. Appl. Crystallogr. 1998, 31, 78-82.

74

D'Acapito, F.; Colonna, S.; Pascarelli, S.; Antonioli, G.; Balerna, A.; Bazzini, A.; Boscherini, F.; Campolungo, F.; Chini, G.; Dalba, G. et al. GILDA (Itlian Beamline) on Bu8. ESRF Newsletter 1998, 30, 42-44.

75
Draine, B. T.; Flatau, P. J. User Guide for the Discrete Dipole Approximation Code DDSCAT 7. 1, 2010. http.arxiv.org/abs/1002.1505v1S (accessed Jun 15, 2014).
76

Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: New York, 1985.

File
nr-8-12-4007_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 July 2015
Revised: 14 September 2015
Accepted: 22 September 2015
Published: 03 November 2015
Issue date: December 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

Authors acknowledge Prof. A. Martucci for useful discussions. Financial support from University of Padova (PRAT no. CPDA114097/11 and Progetto Strategico STPD11RYPT_001) and MIUR (PRIN MULTINANOITA no. 2010JMAZML_001) is gratefully acknowledged.

Return