Journal Home > Volume 8 , Issue 12

Direct writing of graphene patterns and devices may significantly facilitate the application of graphene-based flexible electronics. In terms of scalability and cost efficiency, inkjet printing is very competitive over other existing directwriting methods. However, it has been challenging to obtain highly stable and clog-free graphene-based ink. Here, we report an alternative and highly efficient technique to directly print a reducing reagent on graphene oxide film to form conductive graphene patterns. By this "inkjet reduction" method, without using any other microfabrication technique, conductive graphene patterns and devices for various applications are obtained. The ionic nature of the reductant ink makes it clog-free and stable for continuous and large-area printing. The method shows self-limited reduction feature, which enables electrical conductivity of graphene patterns to be tuned within 5 orders of magnitude, reaching as high as 8, 000 S·m–1. Furthermore, this method can be extended to produce noble metal/graphene composite patterns. The devices, including transistors, biosensors, and surfaceenhanced Raman scattering substrates, demonstrate excellent functionalities. This work provides a new strategy to prepare large-area graphene-based devices that is low-cost and highly efficient, promising to advance research on graphenebased flexible electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct writing of graphene patterns and devices on graphene oxide films by inkjet reduction

Show Author's information Yang Su§Shuai Jia§Jinhong Du( )Jiangtan YuanChang LiuWencai RenHuiming Cheng( )
Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences72 Wenhua RoadShenyang110016China

§ These authors contributed equally to this work.

Abstract

Direct writing of graphene patterns and devices may significantly facilitate the application of graphene-based flexible electronics. In terms of scalability and cost efficiency, inkjet printing is very competitive over other existing directwriting methods. However, it has been challenging to obtain highly stable and clog-free graphene-based ink. Here, we report an alternative and highly efficient technique to directly print a reducing reagent on graphene oxide film to form conductive graphene patterns. By this "inkjet reduction" method, without using any other microfabrication technique, conductive graphene patterns and devices for various applications are obtained. The ionic nature of the reductant ink makes it clog-free and stable for continuous and large-area printing. The method shows self-limited reduction feature, which enables electrical conductivity of graphene patterns to be tuned within 5 orders of magnitude, reaching as high as 8, 000 S·m–1. Furthermore, this method can be extended to produce noble metal/graphene composite patterns. The devices, including transistors, biosensors, and surfaceenhanced Raman scattering substrates, demonstrate excellent functionalities. This work provides a new strategy to prepare large-area graphene-based devices that is low-cost and highly efficient, promising to advance research on graphenebased flexible electronics.

Keywords: inkjet printing, graphene, graphene oxide, reduction, direct writing

References(34)

1

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. -S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll- to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 2010, 5, 574-578.

2

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.

3

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101-105.

4

Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotech. 2008, 3, 538-542.

5

Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228-240.

6

Chua, C. K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291-312.

7

Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S. Y.; Hu, Y. K.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373-1376.

8

Zhang, K.; Fu, Q.; Pan, N.; Yu, X. X.; Liu, J. Y.; Luo, Y.; Wang, X. P.; Yang, J. L.; Hou, J. G. Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography. Nat. Commun. 2012, 3, 1194.

9

Mativetsky, J. M.; Treossi, E.; Orgiu, E.; Melucci, M.; Veronese, G. P.; Samorì, P.; Palermo, V. Local current mapping and patterning of reduced graphene oxide. J. Am. Chem. Soc. 2010, 132, 14130-14136.

10

Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotech. 2011, 6, 496-500.

11

Zhang, Y. L.; Guo, L.; Wei, S.; He, Y. Y.; Xia, H.; Chen, Q. D.; Sun, H. -B.; Xiao, F. -S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 2010, 5, 15-20.

12

Strong, V.; Dubin, S.; El-Kady, M. F.; Lech, A.; Wang, Y.; Weiller, B. H.; Kaner, R. B. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 2012, 6, 1395-1403.

13

Shin, K. -Y.; Hong, J. -Y.; Jang, J. Micropatterning of graphene sheets by inkjet printing and its wideband dipole- antenna application. Adv. Mater. 2011, 23, 2113-2118.

14

Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem., Int. Ed. 2010, 49, 2154-2157.

15

Torrisi, F.; Hasan, T.; Wu, W. P.; Sun, Z. P.; Lombardo, A.; Kulmala, T. S.; Hsieh, G. -W.; Jung, S.; Bonaccorso, F.; Paul, P. J. et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992-3006.

16

Su, Y.; Du, J. H.; Sun, D. M.; Liu, C.; Cheng, H. M. Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors. Nano Res. 2013, 6, 842-852.

17

Zhao, J. P.; Pei, S. F.; Ren, W. C.; Gao, L. B.; Cheng, H. -M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010, 4, 5245-5252.

18

Wang, J.; Liang, M. H.; Fang, Y.; Qiu, T. F.; Zhang, J.; Zhi, L. J. Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 2012, 24, 2874-2878.

19

Han, D. X.; Han, T. T.; Shan, C. S.; Ivaska, A.; Niu, L. Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanalysis 2010, 22, 2001-2008.

20

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.

21

Shin, H. -J.; Kim, K. K.; Benayad, A.; Yoon, S. -M.; Park, H. K.; Jung, I. -S.; Jin, M. H.; Jeong, H. -K.; Kim, J. M.; Choi, J. -Y.; Lee, Y. H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987-1992.

22

Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar- Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 2010, 114, 6426-6432.

23

Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112-1114.

24

Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren, W. C.; Cheng, H. -M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466-4474.

25

Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

26

Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145-152.

27

Mashimo, S.; Miura, N.; Umehara, T. The structure of water determined by microwave dielectric study on water mixtures with glucose, polysaccharides, and L-ascorbic acid. J. Chem. Phys. 1992, 97, 6759-6765.

28

Choi, S. -J.; Choi, B. -G.; Park, S. -M. Electrochemical sensor for electrochemically inactive β-D(+)-glucose using α-cyclodextrin template molecules. Anal. Chem. 2002, 74, 1998-2002.

29

Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 2010, 40, 395-414.

30

Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 2014, 343, 752-754.

31

Su, Y.; Kravets, V. G.; Wong, S. L.; Waters, J.; Geim, A. K.; Nair, R. R. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 2014, 5, 4843.

32

Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhänen, T. Ultrafast graphene oxide humidity sensors. ACS Nano 2013, 7, 11166-11173.

33

Yu, X. X.; Cai, H. B.; Zhang, W. H.; Li, X. J.; Pan, N.; Luo, Y.; Wang, X. P.; Hou, J. G. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano 2011, 5, 952-958.

34

Zhou, Q.; Li, Z. C.; Yang, Y.; Zhang, Z. J. Arrays of aligned, single crystalline silver nanorods for trace amount detection. J. Phys. D: Appl. Phys. 2008, 41, 152007.

File
nr-8-12-3954_ESM.pdf (815.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 July 2015
Revised: 26 August 2015
Accepted: 08 September 2015
Published: 28 October 2015
Issue date: December 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National High-tech R & D Program of China (No. 2012AA030303), the Chinese Academy of Sciences (No. KGZD-EW-303-3), the National Natural Science Foundation of China (No. 51221264) and the Graduate School of the Chinese Academy of Sciences (Program of Innovation of Sciences and Technology for Graduate Students).

Return