Journal Home > Volume 8 , Issue 12

Black phosphorus (BP) is a good candidate for studying strain effects on twodimensional (2D) materials beyond graphene and transition-metal dichalcogenides. This is because of its particular ability to sustain high strain and remarkably anisotropic mechanical properties resulting from its unique puckered structure. We here investigate the dependence of lattice vibrational frequencies on crystallographic orientations in uniaxially strained few-layer BP by in-situ strained Raman spectroscopy. The out-of-plane Ag1 mode is sensitive to uniaxial strain along the near-armchair direction whereas the in-plane B2g and Ag2 modes are sensitive to strain in the near-zigzag direction. For uniaxial strains applied away from these directions, all three phonon modes are linearly redshifted. Our experimental observation is explained by the anisotropic influence of uniaxial tensile strain on structural properties of BP using density functional theory. This study demonstrates the possibility of selective tuning of in-plane and out-of-plane phonon modes in BP by uniaxial strain and makes strain engineering a promising avenue for extensively modulating the optical and mechanical properties of 2D materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus

Show Author's information Yanlong Wang1,§Chunxiao Cong1,§Ruixiang Fei2Weihuang Yang1Yu Chen1Bingchen Cao1Li Yang2( )Ting Yu1,3( )
Division of Physics and Applied PhysicsSchool of Physical and Mathematical SciencesNanyang Technological University637371Singapore
Department of PhysicsWashington University in St. LouisSt. LouisMissouri63130USA
Department of PhysicsFaculty of ScienceNational University of Singapore117542Singapore

§These authors contributed equally to this work.

Abstract

Black phosphorus (BP) is a good candidate for studying strain effects on twodimensional (2D) materials beyond graphene and transition-metal dichalcogenides. This is because of its particular ability to sustain high strain and remarkably anisotropic mechanical properties resulting from its unique puckered structure. We here investigate the dependence of lattice vibrational frequencies on crystallographic orientations in uniaxially strained few-layer BP by in-situ strained Raman spectroscopy. The out-of-plane Ag1 mode is sensitive to uniaxial strain along the near-armchair direction whereas the in-plane B2g and Ag2 modes are sensitive to strain in the near-zigzag direction. For uniaxial strains applied away from these directions, all three phonon modes are linearly redshifted. Our experimental observation is explained by the anisotropic influence of uniaxial tensile strain on structural properties of BP using density functional theory. This study demonstrates the possibility of selective tuning of in-plane and out-of-plane phonon modes in BP by uniaxial strain and makes strain engineering a promising avenue for extensively modulating the optical and mechanical properties of 2D materials.

Keywords: anisotropy, density functional theory, black phosphorus, Raman spectroscopy, uniaxial strain

References(65)

1

Novoselov, K. S. ; Geim, A. K. ; Morozov, S. V. ; Jiang, D. ; Katsnelson, M. I. ; Grigorieva, I. V. ; Dubonos, S. V. ; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.

2

Castro Neto, A. H. ; Guinea, F. ; Peres, N. M. R. ; Novoselov, K. S. ; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.

3

Cong, C. X. ; Shang, J. Z. ; Wu, X. ; Cao, B. C. ; Peimyoo, N. ; Qiu, C. Y. ; Sun, L. T. ; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131-136.

4

Peimyoo, N. ; Shang, J. Z. ; Cong, C. X. ; Shen, X. N. ; Wu, X. Y. ; Yeow, E. K. L. ; Yu, T. Nonblinking, intense two- dimensional light emitter: Monolayer WS2 triangles. ACS Nano 2013, 7, 10985-10994.

5

Cooper, R. C. ; Lee, C. ; Marianetti, C. A. ; Wei, X. D. ; Hone, J. ; Kysar, J. W. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B 2013, 87, 035423.

6

Bertolazzi, S. ; Brivio, J. ; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703-9709.

7

Das, A. ; Pisana, S. ; Chakraborty, B. ; Piscanec, S. ; Saha, S. K. ; Waghmare, U. V. ; Novoselov, K. S. ; Krishnamurthy, H. R. ; Geim, A. K. ; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210-215.

8

Liang, X. G. ; Fu, Z. L. ; Chou, S. Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 2007, 7, 3840-3844.

9

Ovchinnikov, D. ; Allain, A. ; Huang, Y. -S. ; Dumcenco, D. ; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174-8181.

10

Liu, W. ; Kang, J. H. ; Sarkar, D. ; Khatami, Y. ; Jena, D. ; Banerjee, K. Role of metal contacts in designing high- performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983-1990.

11

Castellanos-Gomez, A. ; Vicarelli, L. ; Prada, E. ; Island, J. O. ; Narasimha-Acharya, K. L. ; Blanter, S. I. ; Groenendijk, D. J. ; Buscema, M. ; Steele, G. A. ; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

12

Ling, X. ; Wang, H. ; Huang, S. X. ; Xia, F. N. ; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523-4530.

13

Xia, F. N. ; Wang, H. ; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

14

Qiao, J. S. ; Kong, X. H. ; Hu, Z. -X. ; Yang, F. ; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

15

Wu, J. X. ; Mao, N. N. ; Xie, L. M. ; Xu, H. ; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 2366-2369.

16

Ribeiro, H. B. ; Pimenta, M. A. ; de Matos, C. J. S. ; Moreira, R. L. ; Rodin, A. S. ; Zapata, J. D. ; de Souza, E. A. T. ; Castro Neto, A. H. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 2015, 9, 4270- 4276.

17

Qin, G. Z. ; Yan, Q. B. ; Qin, Z. Z. ; Yue, S. Y. ; Hu, M. ; Su, G. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 2015, 17, 4854-4858.

18

Jain, A. ; McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 2015, 5, 8501.

19

Fei, R. X. ; Yang, L. Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett. 2014, 105, 083120.

20

Hu, T. ; Han, Y. ; Dong, J. M. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains. Nanotechnology 2014, 25, 455703.

21

Jiang, J. W. ; Park, H. S. Negative poisson's ratio in single- layer black phosphorus. Nat. Commun. 2014, 5, 4727.

22

Wei, Q. ; Peng, X. H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 2014, 104, 251915.

23

Yu, T. ; Ni, Z. H. ; Du, C. L. ; You, Y. M. ; Wang, Y. Y. ; Shen, Z. X. Raman mapping investigation of graphene on transparent flexible substrate: The strain effect. J. Phys. Chem. C 2008, 112, 12602-12605.

24

Ni, Z. H. ; Yu, T. ; Lu, Y. H. ; Wang, Y. Y. ; Feng, Y. P. ; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301-2305.

25

Mohiuddin, T. M. G. ; Lombardo, A. ; Nair, R. R. ; Bonetti, A. ; Savini, G. ; Jalil, R. ; Bonini, N. ; Basko, D. M. ; Galiotis, C. ; Marzari, N. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.

26

Huang, M. Y. ; Yan, H. G. ; Chen, C. Y. ; Song, D. H. ; Heinz, T. F. ; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2009, 106, 7304-7308.

27

Pereira, V. M. ; Castro Neto, A. H. ; Peres, N. M. R. Tight- binding approach to uniaxial strain in graphene. Phys. Rev. B 2009, 80, 045401.

28

Kou, L. Z. ; Tang, C. ; Guo, W. L. ; Chen, C. F. Tunable magnetism in strained graphene with topological line defect. ACS Nano 2011, 5, 1012-1017.

29

Wang, Y. L. ; Cong, C. X. ; Qiu, C. Y. ; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 2013, 9, 2857-2861.

30

Wang, Y. L. ; Cong, C. X. ; Yang, W. H. ; Shang, J. Z. ; Peimyoo, N. ; Chen, Y. ; Kang, J. ; Wang, J. P. ; Huang, W. ; Yu, T. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562- 2572.

31

Rice, C. ; Young, R. J. ; Zan, R. ; Bangert, U. ; Wolverson, D. ; Georgiou, T. ; Jalil, R. ; Novoselov, K. S. Raman-scattering measurements and first-principles calculations of strain- induced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307.

32

He, K. L. ; Poole, C. ; Mak, K. F. ; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931- 2936.

33

Conley, H. J. ; Wang, B. ; Ziegler, J. I. ; Haglund, R. F., Jr. ; Pantelides, S. T. ; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626-3630.

34

Zhang, Q. Y. ; Cheng, Y. C. ; Gan, L. -Y. ; Schwingenschlögl, U. Giant valley drifts in uniaxially strained monolayer MoS2. Phys. Rev. B 2013, 88, 245447.

35

Zhu, C. R. ; Wang, G. ; Liu, B. L. ; Marie, X. ; Qiao, X. F. ; Zhang, X. ; Wu, X. X. ; Fan, H. ; Tan, P. H. ; Amand, T. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301.

36

Johari, P. ; Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 2012, 6, 5449-5456.

37

Peng, X. H. ; Wei, Q. ; Copple, A. Strain-engineered direct- indirect band gap transition and its mechanism in two- dimensional phosphorene. Phys. Rev. B 2014, 90, 085402.

38

Fei, R. X. ; Yang, L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 2014, 14, 2884-2889.

39

Li, Y. ; Yang, S. X. ; Li, J. B. Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field. J. Phys. Chem. C 2014, 118, 23970-23976.

40

Novoselov, K. S. ; Jiang, D. ; Schedin, F. ; Booth, T. J. ; Khotkevich, V. V. ; Morozov, S. V. ; Geim, A. K. Two- dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.

41

Qin, G. Z. ; Yan, Q. B. ; Qin, Z. Z. ; Yue, S. Y. ; Cui, H. J. ; Zheng, Q. R. ; Su, G. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep. 2014, 4, 6946.

42

Ling, X. ; Liang, L. B. ; Huang, S. X. ; Puretzky, A. A. ; Geohegan, D. B. ; Sumpter, B. G. ; Kong, J. ; Meunier, V. ; Dresselhaus, M. S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 2015, 15, 4080-4088.

43

Sugai, S. ; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 1985, 53, 753-755.

44

Ferrari, A. C. ; Meyer, J. C. ; Scardaci, V. ; Casiraghi, C. ; Lazzeri, M. ; Mauri, F. ; Piscanec, S. ; Jiang, D. ; Novoselov, K. S. ; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

45

Lee, C. ; Yan, H. G. ; Brus, L. E. ; Heinz, T. F. ; Hone, J. ; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

46

Li, S. -L. ; Miyazaki, H. ; Song, H. S. ; Kuramochi, H. ; Nakaharai, S. ; Tsukagoshi, K. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano 2012, 6, 7381-7388.

47

Late, D. J. ; Liu, B. ; Matte, H. S. S. R. ; Rao, C. N. R. ; Dravid, V. P. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv. Funct. Mater. 2012, 22, 1894-1905.

48

Cong, C. X. ; Yu, T. ; Saito, R. ; Dresselhaus, G. F. ; Dresselhaus, M. S. Second-order overtone and combination Raman modes of graphene layers in the range of 1690−2150 cm−1. ACS Nano 2011, 5, 1600-1605.

49

Cong, C. X. ; Yu, T. ; Sato, K. ; Shang, J. Z. ; Saito, R. ; Dresselhaus, G. F. ; Dresselhaus, M. S. Raman characterization of ABA- and ABC-stacked trilayer graphene. ACS Nano 2011, 5, 8760-8768.

50

Voiry, D. ; Yamaguchi, H. ; Li, J. W. ; Silva, R. ; Alves, D. C. B. ; Fujita, T. ; Chen, M. W. ; Asefa, T. ; Shenoy, V. B. ; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850-855.

51

Ni, Z. H. ; Liu, L. ; Wang, Y. Y. ; Zheng, Z. ; Li, L. -J. ; Yu, T. ; Shen, Z. X. G-band Raman double resonance in twisted bilayer graphene: Evidence of band splitting and folding. Phys. Rev. B 2009, 80, 125404.

52

Casiraghi, C. ; Hartschuh, A. ; Qian, H. ; Piscanec, S. ; Georgi, C. ; Fasoli, A. ; Novoselov, K. S. ; Basko, D. M. ; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433-1441.

53

Cong, C. X. ; Yu, T. ; Wang, H. M. Raman study on the G mode of graphene for determination of edge orientation. ACS Nano 2010, 4, 3175-3180.

54

You, Y. M. ; Ni, Z. H. ; Yu, T. ; Shen, Z. X. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 2008, 93, 163112.

55

Wang, Y. Y. ; Ni, Z. H. ; Liu, L. ; Liu, Y. H. ; Cong, C. X. ; Yu, T. ; Wang, X. J. ; Shen, D. Z. ; Shen, Z. X. Stacking-dependent optical conductivity of bilayer graphene. ACS Nano 2010, 4, 4074-4080.

56

Peimyoo, N. ; Shang, J. Z. ; Yang, W. H. ; Wang, Y. L. ; Cong, C. X. ; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2015, 8, 1210-1221.

57

Li, H. ; Lu, G. ; Wang, Y. L. ; Yin, Z. Y. ; Cong, C. X. ; He, Q. Y. ; Wang, L. ; Ding, F. ; Yu, T. ; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974- 1981.

58

Late, D. J. ; Shirodkar, S. N. ; Waghmare, U. V. ; Dravid, V. P. ; Rao, C. N. R. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2. Chemphyschem 2014, 15, 1592-1598.

59

Late, D. J. ; Maitra, U. ; Panchakarla, L. S. ; Waghmare, U. V. ; Rao, C. N. R. Temperature effects on the Raman spectra of graphenes: Dependence on the number of layers and doping. J. Phys. : Condens. Mat. 2011, 23, 055303.

60

Nagaleekar, T. M. ; Late, D. J. Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces 2014, 6, 1158-1163.

61

Zhang, S. ; Yang, J. ; Xu, R. J. ; Wang, F. ; Li, W. F. ; Ghufran, M. ; Zhang, Y. -W. ; Yu, Z. F. ; Zhang, G. ; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/ angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590-9596.

62

Castellanos-Gomez, A. ; Vicarelli, L. ; Prada, E. ; Island, J. O. ; Narasimha-Acharya, K. L. ; Blanter, S. I. ; Groenendijk, D. J. ; Buscema, M. ; Steele, G. A. ; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

63

Liu, H. ; Neal, A. T. ; Zhu, Z. ; Luo, Z. ; Xu, X. F. ; Tománek, D. ; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.

64

Lu, W. L. ; Nan, H. Y. ; Hong, J. H. ; Chen, Y. M. ; Zhu, C. ; Liang, Z. ; Ma, X. Y. ; Ni, Z. H. ; Jin, C. H. ; Zhang, Z. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 2014, 7, 853-859.

65

Late, D. J. Temperature dependent phonon shifts in few- layer black phosphorus. ACS Appl. Mater. Interfaces 2015, 7, 5857-5862.

File
nr-8-12-3944_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 July 2015
Revised: 06 September 2015
Accepted: 08 September 2015
Published: 17 November 2015
Issue date: December 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work is supported by MOE Tier 2 (No. MOE2012- T2-2-049) and MOE Tier 1 (No. MOE2013-T1-2-235). R. X. Fei and L. Yang acknowledge support from the National Science Foundation (NSF) (No. DMR-1207141) and NSF CAREER (No. DMR-1455346).

Return