Journal Home > Volume 8 , Issue 12

Here, we report a method that uses gold nanoparticles (AuNPs) to enhance the specificity of DNA hybridization without reducing its detection sensitivity. The conventional stringent wash method utilizes high-temperature/low-salt conditions to enhance the specificity of DNA hybridization-based assays. This method creates a destabilizing environment for base pairing that affects specific and nonspecific duplexes. Therefore, specificity is achieved at the expense of signal intensity or sensitivity. However, in the proposed wash method, AuNPs predominantly destabilize nonspecific duplexes, offering specificity without compromising sensitivity. This AuNP wash technique has proven to be effective in detecting single nucleotide polymorphisms (SNPs) in genomic samples even at room temperature in a CD-like NanoBioArray (CD-NBA) chip. This method is also robust with sequence variation and is compatible with multiplex DNA analyses on microarrays. Thus, the AuNP wash method could potentially be useful for improving the accuracy of DNA hybridization results.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced destabilization of mismatched DNA using gold nanoparticles offers specificity without compromising sensitivity for nucleic acid analyses

Show Author's information Abootaleb Sedighi1,Vicki Whitehall2Paul C. H. Li1( )
Qepartment of ChemistrySimon Fraser UniversityBurnabyBC, V5A1S6Canada
QIMR Berghofer Medical Research Institute300 Herston RdBrisbaneQLD4006Australia

Present address: Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ON, L5L1C6, Canada

Abstract

Here, we report a method that uses gold nanoparticles (AuNPs) to enhance the specificity of DNA hybridization without reducing its detection sensitivity. The conventional stringent wash method utilizes high-temperature/low-salt conditions to enhance the specificity of DNA hybridization-based assays. This method creates a destabilizing environment for base pairing that affects specific and nonspecific duplexes. Therefore, specificity is achieved at the expense of signal intensity or sensitivity. However, in the proposed wash method, AuNPs predominantly destabilize nonspecific duplexes, offering specificity without compromising sensitivity. This AuNP wash technique has proven to be effective in detecting single nucleotide polymorphisms (SNPs) in genomic samples even at room temperature in a CD-like NanoBioArray (CD-NBA) chip. This method is also robust with sequence variation and is compatible with multiplex DNA analyses on microarrays. Thus, the AuNP wash method could potentially be useful for improving the accuracy of DNA hybridization results.

Keywords: specificity, gold nanoparticles, DNA hybridization, single nucleotide polymorphism, CD-like NanoBioArray chip

References(33)

1

Gubala, V. ; Harris, L. F. ; Ricco, A. J. ; Tan, M. X. ; Williams, D. E. Point of care diagnostics: Status and future. Anal. Chem. 2012, 84, 487-515.

2

Niemz, A. ; Ferguson, T. M. ; Boyle, D. S. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 2011, 29, 240-250.

3

Knez, K. ; Spasic, D. ; Janssen, K. P. F. ; Lammertyn, J. Emerging technologies for hybridization based single nucleotide polymorphism detection. Analyst 2014, 139, 353-370.

4

Koltai, H. ; Weingarten-Baror, C. Specificity of DNA microarray hybridization: Characterization, effectors and approaches for data correction. Nucleic Acids Res. 2008, 36, 2395-2405.

5

Chagovetz, A. ; Blair, S. Real-time DNA microarrays: Reality check. Biochem. Soc. Trans. 2009, 37, 471-475.

6

Wittwer, C. T. High‐resolution DNA melting analysis: Advancements and limitations. Hum. Mutat. 2009, 30, 857-859.

7

Urakawa, H. ; El Fantroussi, S. ; Smidt, H. ; Smoot, J. C. ; Tribou, E. H. ; Kelly, J. J. ; Noble, P. A. ; Stahl, D. A. Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays. Appl. Environ. Microbiol. 2003, 69, 2848-2856.

8

Marcelino, L. A. ; Backman, V. ; Donaldson, A. ; Steadman, C. ; Thompson, J. R. ; Preheim, S. P. ; Lien, C. ; Lim, E. ; Veneziano, D. ; Polz, M. F. Accurately quantifying low- abundant targets amid similar sequences by revealing hidden correlations in oligonucleotide microarray data. Proc. Natl. Acad. Sci. USA 2006, 103, 13629-13634.

9

Rule, R. A. ; Pozhitkov, A. E. ; Noble, P. A. Use of hidden correlations in short oligonucleotide array data are insufficient for accurate quantification of nucleic acid targets in complex target mixtures. J. Microbiol. Methods 2009, 76, 188-195.

10

Michiels, S. ; Koscielny, S. ; Hill, C. Prediction of cancer outcome with microarrays: A multiple random validation strategy. Lancet 2005, 365, 488-492.

11

Demidov, V. V. ; Frank-Kamenetskii, M. D. Two sides of the coin: Affinity and specificity of nucleic acid interactions. Trends Biochem. Sci. 2004, 29, 62-71.

12
Poulsen, L. ; Søe, M. J. ; Snakenborg, D. ; Møller, L. B. ; Dufva, M. Multi-stringency wash of partially hybridized 60-mer probes reveals that the stringency along the probe decreases with distance from the microarray surface. Nucleic Acids Res. [online] 2008, 36, e132. http://www.ncbi.nlm.nih.gov/pubmed/18805905 (accessed Sep 19, 2008).https://doi.org/10.1093/nar/gkn600
DOI
13

Grimes, J. ; Gerasimova, Y. V. ; Kolpashchikov, D. M. Real‐time SNP analysis in secondary-structure-folded nucleic acids. Angew. Chem. 2010, 122, 9134-9137.

14

Kolpashchikov, D. M. Binary malachite green aptamer for fluorescent detection of nucleic acids. J. Am. Chem. Soc. 2005, 127, 12442-12443.

15

Kolpashchikov, D. M. A binary DNA probe for highly specific nucleic acid recognition. J. Am. Chem. Soc. 2006, 128, 10625-10628.

16
Marras, S. A. ; Kramer, F. R. ; Tyagi, S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. [online] 2002, 30, e122. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC135848/ (accessed Nov 1, 2002).https://doi.org/10.1093/nar/gnf121
DOI
17

Tyagi, S. ; Kramer, F. R. Molecular beacons: Probes that fluoresce upon hybridization. Nat. Biotechnol. 1996, 14, 303-308.

18

Zhang, D. Y. ; Chen, S. X. ; Yin, P. Optimizing the specificity of nucleic acid hybridization. Nat. Chem. 2012, 4, 208-214.

19

Sedighi, A. ; Li, P. C. H. Kras gene codon 12 mutation detection enabled by gold nanoparticles conducted in a nanobioarray chip. Anal. Biochem. 2014, 448, 58-64.

20

Wang, L. ; Li, P. C. H. Gold nanoparticle-assisted single base-pair mismatch discrimination on a microfluidic microarray device. Biomicrofluidics 2010, 4, 032209.

21

Sedighi, A. ; Li, P. C. H. ; Pekcevik, I. C. ; Gates, B. D. A proposed mechanism of the influence of gold nanoparticles on DNA hybridization. ACS Nano 2014, 8, 6765-6777.

22

Koch, C. A. ; Li, P. C. H. ; Utkhede, R. S. Evaluation of thin films of agarose on glass for hybridization of DNA to identify plant pathogens with microarray technology. Anal. Biochem. 2005, 342, 93-102.

23

Wang, L. ; Li, P. C. H. Optimization of a microfluidic microarray device for the fast discrimination of fungal pathogenic DNA. Anal. Biochem. 2010, 400, 282-288.

24

Wang, L. ; Li, P. C. H. ; Yu, H. -Z. ; Parameswaran, A. M. Fungal pathogenic nucleic acid detection achieved with a microfluidic microarray device. Anal. Chim Acta 2008, 610, 97-104.

25
Löfås, S. ; Mcwhirter, A. The art of immobilization for SPR sensors. In Surface Plasmon Resonance Based Sensors. Homola, J., Ed. ; Springer: Berlin Heidelberg, 2006; pp 117-151.https://doi.org/10.1007/5346_017
DOI
26

Lee Rodgers, J. ; Nicewander, W. A. Thirteen ways to look at the correlation coefficient. Am. Stat. 1988, 42, 59-66.

27

Lomakin, A. ; Frank-Kamenetskii, M. D. A theoretical analysis of specificity of nucleic acid interactions with oligonucleotides and peptide nucleic acids (PNAs). J. Mol. Biol. 1998, 276, 57-70.

28

Kearns, D. R. ; James, T. L. NMR studies of conformational states and dynamics of DN. Crit. Rev. Biochem. Mol. Biol. 1984, 15, 237-290.

29

Dauxois, T. ; Peyrard, M. ; Bishop, A. R. Entropy-driven DNA denaturation. Phys. Rev. E 1993, 47, R44-R47.

30

Zeng, Y. ; Zocchi, G. Mismatches and bubbles in DNA. Biophys. J. 2006, 90, 4522-4529.

31

Zhang, X. ; Servos, M. R. ; Liu, J. Surface science of DNA adsorption onto citrate-capped gold nanoparticles. Langmuir 2012, 28, 3896-3902.

32

Demers, L. M. ; Östblom, M. ; Zhang, H. ; Jang, N. H. ; Liedberg, B. ; Mirkin, C. A. Thermal desorption behavior and binding properties of DNA bases and nucleosides on gold. J. Am. Chem. Soc. 2002, 124, 11248-11249.

33

Parsons, B. L. ; Myers, M. B. Personalized cancer treatment and the myth of KRAS wild-type colon tumors. Discov. Med. 2013, 15, 259-267.

File
nr-8-12-3922_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 June 2015
Revised: 04 September 2015
Accepted: 08 September 2015
Published: 17 November 2015
Issue date: December 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

We gratefully acknowledge financial support from a Discovery Grant of Natural Sciences and Engineering Research Council of Canada (No. NSERC216925), Dr. Dipankar Sen for useful advice and technical support as well as Dr Naveed Gulzar for his assistance in the SPR measurements.

Return