Journal Home > Volume 9 , Issue 1

We report the investigation of the thermoelectric properties of large-scale solution-synthesized Bi2Te3 nanocomposites prepared from nanowires hotpressed into bulk pellets. A third element, Se, is introduced to tune the carrier concentration of the nanocomposites. Due to the Se doping, the thermoelectric figure of merit (ZT) of the nanocomposites is significantly enhanced due to the increased power factor and reduced thermal conductivity. We also find that thermal transport in our hot-pressed pellets is anisotropic, which results in different thermal conductivities along the in-plane and cross-plane directions. Theoretical calculations for both electronic and thermal transport are carried out to establish fundamental understanding of the material system and provide directions for further ZT optimization with adjustments to carrier concentration and mobility.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thermoelectric properties of solution-synthesized n-type Bi2Te3 nanocomposites modulated by Se: An experimental and theoretical study

Show Author's information Haiyu Fang1,Je-Hyeong Bahk2,Tianli Feng3Zhe Cheng4Amr M. S. Mohammed2Xinwei Wang4Xiulin Ruan3Ali Shakouri2Yue Wu5( )
School of Chemical EngineeringPurdue UniversityWest LafayetteIN47907USA
Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
School of Mechanical EngineeringPurdue UniversityWest LafayetteIN47907USA
Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
Department of Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA

Present address: Materials Research Laboratory, UC Santa Barbara, Santa Barbara, CA 93106, USA

Present address: Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

Abstract

We report the investigation of the thermoelectric properties of large-scale solution-synthesized Bi2Te3 nanocomposites prepared from nanowires hotpressed into bulk pellets. A third element, Se, is introduced to tune the carrier concentration of the nanocomposites. Due to the Se doping, the thermoelectric figure of merit (ZT) of the nanocomposites is significantly enhanced due to the increased power factor and reduced thermal conductivity. We also find that thermal transport in our hot-pressed pellets is anisotropic, which results in different thermal conductivities along the in-plane and cross-plane directions. Theoretical calculations for both electronic and thermal transport are carried out to establish fundamental understanding of the material system and provide directions for further ZT optimization with adjustments to carrier concentration and mobility.

Keywords: nanostructure, thermoelectric, Bi2Te3, Se doping, solution synthesis

References(33)

1

Yim, W. M.; Rosi, F. D. Compound tellurides and their alloys for peltier cooling—A review. Solid-State Electron. 1972, 15, 1121-1134, IN1-IN2, 1135-1140.

2

Carle, M.; Pierrat, P.; Lahalle-Gravier, C.; Scherrer, S.; Scherrer, H. Transport properties of n-type Bi2(Te1-xSex)3 single crystal solid solutions (x ≤ 0.05). J. Phys. Chem. Solids 1995, 56, 201-209.

3

Yamashita, A.; Tomiyoshi, S.; Makita, K. Bismuth telluride compounds with high thermoelectric figures of merit. J. Appl. Phys. 2003, 93, 368-374.

4

Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High- thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634-638.

5

Mehta, R. J.; Zhang, Y. L.; Karthik, C.; Singh, B.; Siegel, R. W.; Borca-Tasciuc, T.; Ramanath, G. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat. Mater. 2012, 11, 233-240.

6

Finefrock, S. W.; Fang, H. Y.; Yang, H. R.; Darsono, H.; Wu, Y. Large-scale solution-phase production of Bi2Te3 and PbTe nanowires using Te nanowire templates. Nanoscale 2014, 6, 7872-7876.

7

Drabble, J. R.; Goodman, C. H. L. Chemical bonding in bismuth telluride. J. Phys. Chem. Solids 1958, 5, 142-144.

8

Mishra, S. K.; Satpathy, S.; Jepsen, O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J. Phys. : Condens. Mat. 1997, 9, 461-470.

9

Liu, W. S.; Zhang, Q. Y.; Lan, Y. C.; Chen, S.; Yan, X.; Zhang, Q.; Wang, H.; Wang, D. Z.; Chen, G.; Ren, Z. F. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv. Energy Mater. 2011, 1, 577-587.

10

Schultz, J. M.; McHugh, J. P.; Tiller, W. A. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J. Appl. Phys. 1962, 33, 2443-2450.

11

Hyun, D. B.; Hwang, J. S.; Shim, J. D.; Oh, T. S. Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method. J. Mater. Sci. 2001, 36, 1285-1291.

12

Jiang, J.; Chen, L. D.; Bai, S. Q.; Yao, Q.; Wang, Q. Fabrication and thermoelectric performance of textured n-type Bi2(Te, Se)3 by spark plasma sintering. Mater. Sci. Eng. : B 2005, 117, 334-338.

13

Scanlon, D. O.; King, P. D. C.; Singh, R. P.; de la Torre, A.; Walker, S. M.; Balakrishnan, G.; Baumberger, F.; Catlow, C. R. A. Controlling bulk conductivity in topological insulators: Key role of anti-site defects. Adv. Mater. 2012, 24, 2154- 2158.

14

Starý, Z.; Horák, J.; Stordeur, M.; Stölzer, M. Antisite defects in Sb2-xBixTe3 mixed crystals. J. Phys. Chem. Solids 1988, 49, 29-34.

15

Jia, S.; Ji, H. W.; Climent-Pascual, E.; Fuccillo, M. K.; Charles, M. E.; Xiong, J.; Ong, N. P.; Cava, R. J. Low- carrier-concentration crystals of the topological insulator Bi2Te2Se. Phys. Rev. B 2011, 84, 235206.

16

Fuccillo, M. K.; Jia, S.; Charles, M. E.; Cava, R. J. Thermoelectric properties of Bi2Te2Se compensated by native defects and Sn doping. J. Electron. Mater. 2013, 42, 1246- 1253.

17

Jia, S.; Beidenkopf, H.; Drozdov, I.; Fuccillo, M. K.; Seo, J.; Xiong, J.; Ong, N. P.; Yazdani, A.; Cava, R. J. Defects and high bulk resistivities in the Bi-rich tetradymite topological insulator Bi2+xTe2-xSe. Phys. Rev. B 2012, 86, 165119.

18

Mavrokefalos, A.; Moore, A. L.; Pettes, M. T.; Shi, L.; Wang, W.; Li, X. G. Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires. J. Appl. Phys. 2009, 105, 104318.

19

Chen, B. L.; Chen, Y. Y.; Lin, S. J.; Ho, J. C.; Lee, P. C.; Chen, C. D.; Harutyunyan, S. R. Fabrication and characterization of electrodeposited bismuth telluride films and nanowires. J. Phys. Chem. C 2010, 114, 3385-3389.

20

Shin, H. S.; Jeon, S. G.; Yu, J.; Kim, Y. S.; Park, H. M.; Song, J. Y. Twin-driven thermoelectric figure-of-merit enhancement of Bi2Te3 nanowires. Nanoscale 2014, 6, 6158-6165.

21

Neuberger, M. The BiTe-BiSe System Data Sheet; U.S. Air Force Research Lab., 1966.

22

Son, J. S.; Choi, M. K.; Han, M. K.; Park, K.; Kim, J. Y.; Lim, S. J.; Oh, M.; Kuk, Y.; Park, C.; Kim, S. J. et al. n-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 2012, 12, 640-647.

23

Zhao, Y. X.; Dyck, J. S.; Hernandez, B. M.; Burda, C. Improving thermoelectric properties of chemically synthesized Bi2Te3-based nanocrystals by annealing. J. Phys. Chem. C 2010, 114, 11607-11613.

24

Soni, A.; Zhao, Y. Y.; Yu, L. G.; Aik, M. K. K.; Dresselhaus, M. S.; Xiong, Q. H. Enhanced thermoelectric properties of solution grown Bi2Te3-xSex nanoplatelet composites. Nano Lett. 2012, 12, 1203-1209.

25

Yoo, B. Y.; Huang, C. K.; Lim, J. R.; Herman, J.; Ryan, M. A.; Fleurial, J. P.; Myung, N. V. Electrochemically deposited thermoelectric n-type Bi2Te3 thin films. Electrochim. Acta 2005, 50, 4371-4377.

26

Kim, D. H.; Byon, E.; Lee, G. H.; Cho, S. Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co- sputtering. Thin Solid Films 2006, 510, 148-153.

27

Boulouz, A.; Giani, A.; Pascal-Delannoy, F.; Boulouz, M.; Foucaran, A.; Boyer, A. Preparation and characterization of MOCVD bismuth telluride thin films. J. Cryst. Growth 1998, 194, 336-341.

28

Yang, J. Y.; Aizawa, T.; Yamamoto, A.; Ohta, T. Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1−x prepared by bulk mechanical alloying and hot pressing. J. Alloys Compd. 2000, 312, 326-330.

29

Goldsmid, J. H. Introduction to Thermoelectricity; Springer: Berlin, Heidelberg, 2010.

30

Cutler, M.; Mott, N. F. Observation of anderson localization in an electron gas. Phys. Rev. 1969, 181, 1336-1340.

31

Rowe, D. M.; Bhandari, C. M. Modern Thermoelectrics; Reston Publishing Company, Inc. : Reston, Virginia, USA, 1983.

32

Fang, H. Y.; Wu, Y. Telluride nanowire and nanowire heterostructure-based thermoelectric energy harvesting. J. Mater. Chem. A 2014, 2, 6004-6014.

33

Fang, H. Y.; Feng, T. L.; Yang, H. R.; Ruan, X. L.; Wu, Y. Synthesis and thermoelectric properties of compositional- modulated lead telluride-bismuth telluride nanowire heterostructures. Nano Lett. 2013, 13, 2058-2063.

File
nr-9-1-117_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 July 2015
Revised: 18 August 2015
Accepted: 05 September 2015
Published: 29 October 2015
Issue date: January 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

H. Y. F. thanks Scott Finefrock and Tianyue Gao for the help in Hall measurement. H. Y. F. and Y. W. acknowledge the use of the hot press setup in Prof. Chin-The Sun's lab at Purdue University. H. Y. F. and Y. W. acknowledge Air Force Office of Scientific Research (No. FA9550-12-1-0061). T. L. F. and X. L. R. acknowledge the partial support from National Science Foundation (No. 1150948).

Return