Journal Home > Volume 8 , Issue 12

A zinc-blende (sphalerite) crystallographic structure of SnSi nanocrystals generated by molecular-beam epitaxy is observed by electron microscopy techniques in a Si matrix. Ab initio density-functional modeling reveals a stabilizing effect of the Si matrix, which results in the lowest formation enthalpy of SnSi nanocrystals having the unexpected zinc-blende structure. Such nanocrystals could be applied in Si photonics to function as non-centrosymmetric media for the nonlinear optical process of second harmonic generation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

SnSi nanocrystals of zinc-blende structure in a Si matrix

Show Author's information Alexander Tonkikh1Andrey Klavsyuk2( )Nikolay Zakharov1Alexander Saletsky2Peter Werner1
Max Planck Institute of Microstructure PhysicsHalle(Saale)06120Germany
Faculty of PhysicsMoscow State UniversityMoscow119991Russian Federation

Abstract

A zinc-blende (sphalerite) crystallographic structure of SnSi nanocrystals generated by molecular-beam epitaxy is observed by electron microscopy techniques in a Si matrix. Ab initio density-functional modeling reveals a stabilizing effect of the Si matrix, which results in the lowest formation enthalpy of SnSi nanocrystals having the unexpected zinc-blende structure. Such nanocrystals could be applied in Si photonics to function as non-centrosymmetric media for the nonlinear optical process of second harmonic generation.

Keywords: density functional theory, epitaxy, zinc-blende, Si–Sn alloy

References(33)

1

Lifshitz, I. M. ; Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35-50.

2

Funakawa, Y. ; Shiozaki, T. ; Tomita, K. ; Yamamoto, T. ; Maeda, E. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ Int. 2004, 44, 1945-1951.

3

Morse, J. W. ; Casey, W. H. Ostwald processes and mineral paragenesis in sediments. Am. J. Sci. 1988, 288, 537-560.

4

Massalski, T. B. ; Okamoto, H. ; Subramanian, P. R. ; Kacprzak, L. Binary Alloy Phase Diagrams, 2nd ed. ; ASM International: Ohio, 1990.

5

Frachioni, A. ; White, Jr., B. E. Simulated thermal conductivity of silicon-based random multilayer thin films. J. Appl. Phys. 2012, 112, 014320.

6

Gallagher, J. D. ; Xu, C. ; Jiang, L. Y. ; Kouvetakis, J. ; Menéndez, J. Fundamental band gap and direct-indirect crossover in Ge1-x-ySixSny alloys. Appl. Phys. Lett. 2013, 103, 202104.

7

Tonkikh, A. A. ; Eisenschmidt, C. ; Talalaev, V. G. ; Zakharov, N. D. ; Schilling, J. ; Schmidt, G. ; Werner, P. Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing. Appl. Phys. Lett. 2013, 103, 032106.

8

Wirths, S. ; Geiger, R. ; von den Driesch, N. ; Mussler, G. ; Stoica, T. ; Mantl, S. ; Ikonic, Z. ; Luysberg, M. ; Chiussi, S. ; Hartmann, J. M. et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Phot. 2015, 9, 88-92.

9

Brudevoll, T. ; Citrin, D. S. ; Christensen, N. E. ; Cardona, M. Calculated band structure of zinc-blende-type SnGe. Phys. Rev. B 1993, 48, 17128-17137.

10

Pandey, R. ; Rérat, M. ; Causà, M. First-principles study of stability, band structure, and optical properties of the ordered Ge0. 50Sn0. 50 alloy. Appl. Phys. Lett. 1999, 75, 4127.

11

Yin, W. -J. ; Gong, X. -G. ; Wei, S. -H. Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys. Phys. Rev. B 2008, 78, 161203R.

12

Tonkikh, A. A. ; Zakharov, N. D. ; Suvorova, A. A. ; Eisenschmidt, C. ; Schilling, J. ; Werner, P. Cubic phase Sn-rich GeSn nanocrystals in a Ge matrix. Cryst. Growth Des. 2014, 14, 1617-1621.

13

Min, K. S. ; Atwater, H. A. Ultrathin pseudomorphic Sn/Si and SnxSi1-x/Si heterostructures. Appl. Phys. Lett. 1998, 72, 1884.

14

Tonkikh, A. A. ; Zakharov, N. D. ; Eisenschmidt, C. ; Leipner, H. S. ; Werner, P. Aperiodic SiSn/Si multilayers for thermoelectric applications. J. Cryst. Growth 2014, 392, 49-51.

15

Fyhn, M. F. ; Chevallier, J. ; Larsen, A. N. ; Feidenhans'l, R. ; Seibt, M. α-Sn and β-Sn precipitates in annealed epitaxial Si0. 95Sn0. 05. Phys. Rev. B 1999, 60, 5770.

16

Gaiduk, P. I. ; Hansen, J. L. ; Larsen, A. N. Irradiation- induced nano-voids in strained tin precipitates in silicon. Appl. Phys. Lett. 2014, 104, 153107.

17

Karim, A. ; Hansson, G. V. ; Ni, W. -X. ; Holtz, P. O. ; Larsson, M. ; Atwater, H. A. Photoluminescence studies of Sn quantum dots in Si grown by MBE. Opt. Mat. 2005, 27, 836-840.

18

Brown, L. M. ; Woolhouse, G. R. ; Valdrè, U. Radiation- induced coherency loss in a Cu-Co alloy. Philos. Mag. 1968, 17, 781-789.

19

Martins, J. L. ; Zunger, A. Stability of ordered bulk and epitaxial semiconductor alloys. Phys. Rev. Lett. 1986, 56, 1400-1403.

20

Deibuk, V. G. ; Korolyuk, Y. G. The effect of strain on the thermodynamic properties of Ge-Si, Ge-Sn, Si-Sn, Si-C thin solid films. Semic. Phys., Quant. Electron. Optoelectr. 2002, 5, 247-253.

21

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

22

Kresse, G. ; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

23

Kresse, G. ; Hafner, J. Ab initio molecular dynamics for open- shell transition metals. Phys. Rev. B 1993, 48, 13115-13118.

24

Wang, Y. ; Perdew, J. P. Correlation hole of the spin- polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 1991, 44, 13298-13307.

25

Perdew, J. P. ; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244-13249.

26

Wolverton, C. ; Ozoliņš, V. First-principles aluminum database: Energetics of binary Al alloys and compounds. Phys. Rev. B 2006, 73, 144104.

27

Ma, D. C. ; Friák, M. ; von Pezold, J. ; Raabe, D. ; Neugebauer, J. Ab initio identified design principles of solid-solution strengthening in Al. Sci. Technol. Adv. Mater. 2013, 14, 025001.

28

Tsysar, K. M. ; Bazhanov, D. I. ; Smelova, E. M. ; Saletsky, A. M. Effect of alloying of magnetic and non-magnetic low reactivity atoms into atomic chain. Phys. Status Solidi B 2014, 251, 871-876.

29

Chelikowsky, J. R. High-pressure phase transitions in diamond and zinc-blende semiconductors. Phys. Rev. B 1987, 35, 1174-1180.

30

Sugiyama, H. ; Suzuki, S. ; Asada, M. Room-temperature resonant-tunneling-diode terahertz oscillator based on precisely controlled semiconductor epitaxial growth technology. NTT Tech. Rev. 2011, 9, 1.

31

Newman, K. E. ; Dow, J. D. Zinc-blende-diamond order- disorder transition in metastable crystalline (GaAs)1-xGe2x alloys. Phys. Rev. B 1983, 27, 7495-7508.

32

Švrček, V. ; Mariotti, D. ; Blackley, R. A. Zhou, W. Z. ; Nagai, T. ; Matsubara, K. ; Kondo, M. Semiconducting quantum confined silicon-tin alloyed nanocrystals prepared by ns pulsed laser ablation in water. Nanoscale 2013, 5, 6725-6730.

33

Shin, S. J. ; Guzman, J. ; Yuan, C. W. ; Liao, C. Y. ; Boswell- Koller, C. N. ; Stone, P. R. ; Dubon, O. D. ; Minor, A. M. ; Watanabe, M. ; Beeman, J. W. et al. Embedded binary eutectic alloy nanostructures: A new class of phase change materials. Nano Lett. 2010, 10, 2794-2798.

File
nr-8-12-3905_ESM.pdf (772 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 July 2015
Revised: 21 August 2015
Accepted: 27 August 2015
Published: 11 November 2015
Issue date: December 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

Computational resources were provided by the Research Computing Center of the Moscow State University (MSU NIVC). The financial support of the BMBF (No. 03Z2HN12) and the Russian Foundation of Basic Researches (No. 15-32-20560) is gratefully acknowledged. A. Tonkikh is thankful to J. Schilling and A. Suvorova for fruitful discussions.

Return