Journal Home > Volume 8 , Issue 12

Multispectral optoacoustic tomography (MSOT) is an emerging imaging technology that offers several advantages over traditional modalities, particularly in its ability to resolve optical contrast at depth on the microscopic scale. While potential applications include the early detection of tumors below clinical thresholds set by current technology, the lack of tumor-specific contrast agents limits the use of MSOT imaging. Therefore, we constructed highly stable nano-contrast agents by coating gold nanorods (GNRs) with either polyacrylic acid (PAA) or aminefunctionalized mesoporous silica (MS). Syndecan-1, which has been shown to target insulin-like growth factor 1 receptor (IGF1-R) (upregulated in pancreatic tumors), was conjugated on the surface of PAA-coated GNRs (PAA-GNRs) or MS-coated GNRs (MS-GNRs) to create tumor-targeted nanoparticles. In vitro, tumor targeting of nanoparticles was assessed with flow cytometry. In S2VP10L cells (positive for IGF1-R), the syndecan-1 MS-GNRs (Syndecan-MS-GNRs) demonstrated an increase in OA signal, 10x, compared to syndecan-1 PAAGNRs (Syndecan-PAA-GNRs). Minimal binding was observed in MiaPaca-2 cells (negative for IGF1-R). In vivo, tumor specific targeting of Syndecan-MS-GNRs was evaluated using a murine orthotopic pancreatic cancer model. The Syndecan- MS-GNRs demonstrated significantly greater accumulation within pancreatic tumors than in off-target organs such as the liver. Mice implanted with the IGF1-R negative MiaPaca-2 cells did not demonstrate specific tumor targeting. In summary, we report that targeted nano-contrast agents (Syndecan-MS-GNRs) can successfully detect orthotopic pancreatic tumors with minimum off-target binding in vivo using MSOT.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tumor targeted mesoporous silica-coated gold nanorods facilitate detection of pancreatic tumors using Multispectral optoacoustic tomography

Show Author's information Anil Khanal1Christopher Ullum1Charles W. Kimbrough2Nichola C. Garbett1Joseph A. Burlison1Molly W. McNally1Phillip Chuong1Ayman S. El-Baz3Jacek B. Jasinski3Lacey R. McNally1( )
Department of MedicineUniversity of LouisvilleLouisvilleKY40202USA
Department of SurgeryUniversity of LouisvilleLouisvilleKY40292USA
Speed School of EngineeringUniversity of LouisvilleLouisvilleKY40292USA

Abstract

Multispectral optoacoustic tomography (MSOT) is an emerging imaging technology that offers several advantages over traditional modalities, particularly in its ability to resolve optical contrast at depth on the microscopic scale. While potential applications include the early detection of tumors below clinical thresholds set by current technology, the lack of tumor-specific contrast agents limits the use of MSOT imaging. Therefore, we constructed highly stable nano-contrast agents by coating gold nanorods (GNRs) with either polyacrylic acid (PAA) or aminefunctionalized mesoporous silica (MS). Syndecan-1, which has been shown to target insulin-like growth factor 1 receptor (IGF1-R) (upregulated in pancreatic tumors), was conjugated on the surface of PAA-coated GNRs (PAA-GNRs) or MS-coated GNRs (MS-GNRs) to create tumor-targeted nanoparticles. In vitro, tumor targeting of nanoparticles was assessed with flow cytometry. In S2VP10L cells (positive for IGF1-R), the syndecan-1 MS-GNRs (Syndecan-MS-GNRs) demonstrated an increase in OA signal, 10x, compared to syndecan-1 PAAGNRs (Syndecan-PAA-GNRs). Minimal binding was observed in MiaPaca-2 cells (negative for IGF1-R). In vivo, tumor specific targeting of Syndecan-MS-GNRs was evaluated using a murine orthotopic pancreatic cancer model. The Syndecan- MS-GNRs demonstrated significantly greater accumulation within pancreatic tumors than in off-target organs such as the liver. Mice implanted with the IGF1-R negative MiaPaca-2 cells did not demonstrate specific tumor targeting. In summary, we report that targeted nano-contrast agents (Syndecan-MS-GNRs) can successfully detect orthotopic pancreatic tumors with minimum off-target binding in vivo using MSOT.

Keywords: gold nanorods, mesoporous silica, pancreatic cancer, multispectral optoacoustic tomography, syndecan-1

References(44)

1

Eloubeidi, M. A. ; Chen, V. K. ; Eltoum, I. A. ; Jhala, D. ; Chhieng, D. C. ; Jhala, N. ; Vickers, S. M. ; Wilcox, C. M. Endoscopic ultrasound-guided fine needle aspiration biopsy of patients with suspected pancreatic cancer: Diagnostic accuracy and acute and 30-day complications. Am. J. Gastroenterol. 2003, 98, 2663-2668.

2

Vaccaro, V. ; Sperduti, I. ; Milella, M. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 365, 768-769.

3

Werner, J. ; Combs, S. E. ; Springfeld, C. ; Hartwig, W. ; Hackert, T. ; Buchler, M. W. Advanced-stage pancreatic cancer: Therapy options. Nat. Rev. Clin. Oncol. 2013, 10, 323-333.

4

Von Hoff, D. D. ; Ervin, T. ; Arena, F. P. ; Chiorean, E. G. ; Infante, J. ; Moore, M. ; Seay, T. ; Tjulandin, S. A. ; Ma, W. W. ; Saleh, M. N. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691-1703.

5

Cao, H. ; Le, D. ; Yang, L. X. Current status in chemotherapy for advanced pancreatic adenocarcinoma. Anticancer Res. 2013, 33, 1785-1791.

6

Bilimoria, K. Y. ; Bentrem, D. J. ; Ko, C. Y. ; Stewart, A. K. ; Winchester, D. P. ; Talamonti, M. S. National failure to operate on early stage pancreatic cancer. Ann. Surg. 2007, 246, 173-180.

7

Kaur, S. ; Baine, M. J. ; Jain, M. ; Sasson, A. R. ; Batra, S. K. Early diagnosis of pancreatic cancer: Challenges and new developments. Biomark. Med. 2012, 6, 597-612.

8

Hosoki, T. Dynamic CT of pancreatic tumors. AJR Am. J. Roentgenol. 1983, 140, 959-965.

9

Sofuni, A. ; Iijima, H. ; Moriyasu, F. ; Nakayama, D. ; Shimizu, M. ; Nakamura, K. ; Itokawa, F. ; Itoi, T. Differential diagnosis of pancreatic tumors using ultrasound contrast imaging. J. Gastroenterol. 2005, 40, 518-525.

10

Dietrich, C. F. ; Ignee, A. ; Braden, B. ; Barreiros, A. P. ; Ott, M. ; Hocke, M. Improved differentiation of pancreatic tumors using contrast-enhanced endoscopic ultrasound. Clin. Gastroenterol. Hepatol. 2008, 6, 590-597, e591.

11

Ntziachristos, V. ; Ripoll, J. ; Wang, L. V. ; Weissleder, R. Looking and listening to light: The evolution of whole-body photonic imaging. Nat. Biotechnol. 2005, 23, 313-320.

12

Mallidi, S. ; Luke, G. P. ; Emelianov, S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 2011, 29, 213-221.

13

Kimbrough, C. W. ; Khanal, A. ; Zeiderman, M. ; Khanal, B. R. ; Burton, N. C. ; McMasters, K. M. ; Vickers, S. M. ; Grizzle, W. E. ; McNally, L. R. Targeting acidity in pancreatic adenocarcinoma: Multispectral optoacoustic tomography detects pH-low insertion peptide probes in vivo. Clin. Cancer Res. 2015, 21, 4576-4585.

14

Luker, G. D. ; Luker, K. E. Optical imaging: Current applications and future directions. J. Nucl. Med. 2008, 49, 1-4.

15

Mehrmohammadi, M. ; Yoon, S. J. ; Yeager, D. ; Emelianov, S. Y. Photoacoustic imaging for cancer detection and staging. Curr. Mol. Imaging 2013, 2, 89-105.

16

Hudson, S. V. ; Huang, J. S. ; Yin, W. Y. ; Albeituni, S. ; Rush, J. ; Khanal, A. ; Yan, J. ; Ceresa, B. P. ; Frieboes, H. B. ; McNally, L. R. Targeted noninvasive imaging of EGFR- expressing orthotopic pancreatic cancer using multispectral optoacoustic tomography. Cancer Res. 2014, 74, 6271-6279.

17

Ho, C. J. ; Balasundaram, G. ; Driessen, W. ; McLaren, R. ; Wong, C. L. ; Dinish, U. S. ; Attia, A. B. E. ; Ntziachristos, V. ; Olivo, M. Multifunctional photosensitizer-based contrast agents for photoacoustic imaging. Sci. Rep. 2014, 4, 5342.

18

Tucker-Schwartz, J. M. ; Meyer, T. A. ; Patil, C. A. ; Duvall, C. L. ; Skala, M. C. In vivo photothermal optical coherence tomography of gold nanorod contrast agents. Biomed. Opt. Express 2012, 3, 2881-2895.

19

Hu, X. G. ; Gao, X. H. Multilayer coating of gold nanorods for combined stability and biocompatibility. Phys. Chem. Chem. Phys. 2011, 13, 10028-10035.

20

Luo, T. ; Huang, P. ; Gao, G. ; Shen, G. X. ; Fu, S. ; Cui, D. X. ; Zhou, C. Q. ; Ren, Q. S. Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt. Express 2011, 19, 17030-17039.

21

Huang, J. Y. ; Park, J. ; Wang, W. ; Murphy, C. J. ; Cahill, D. G. Ultrafast thermal analysis of surface functionalized gold nanorods in aqueous solution. ACS Nano 2013, 7, 589-597.

22

Bao, C. C. ; Beziere, N. ; del Pino, P. ; Pelaz, B. ; Estrada, G. ; Tian, F. R. ; Ntziachristos, V. ; de la Fuente, J. M. ; Cui, D. X. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small 2013, 9, 68-74.

23

Beauvais, D. M. ; Rapraeger, A. C. Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation. J. Cell Sci. 2010, 123, 3796-3807.

24

Rapraeger, A. C. ; Ell, B. J. ; Roy, M. ; Li, X. H. ; Morrison, O. R. ; Thomas, G. M. ; Beauvais, D. M. Vascular endothelial- cadherin stimulates syndecan-1-coupled insulin-like growth factor-1 receptor and cross-talk between αVβ3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis. FEBS J 2013, 280, 2194-2206.

25

Rapraeger, A. C. Synstatin: A selective inhibitor of the syndecan-1-coupled IGF1R-αvβ3 integrin complex in tumorigenesis and angiogenesis. FEBS J 2013, 280, 2207- 2215.

26

Kimbrough, C. W. ; Hudson, S. ; Khanal, A. ; Egger, M. E. ; McNally, L. R. Orthotopic pancreatic tumors detected by optoacoustic tomography using Syndecan-1. J. Surg. Res. 2015, 193, 246-254.

27

Wu, C. L. ; Xu, Q. H. Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir 2009, 25, 9441-9446.

28

Kirui, D. K. ; Krishnan, S. ; Strickland, A. D. ; Batt, C. A. PAA- derived gold nanorods for cellular targeting and photothermal therapy. Macromol. Biosci. 2011, 11, 779-788.

29

Huang, J. S. ; Egger, M. E. ; Grizzle, W. E. ; McNally, L. R. MicroRNA-100 regulates IGF1-receptor expression in metastatic pancreatic cancer cells. Biotech. Histochem. 2013, 88, 397-402.

30

McNally, L. R. ; Welch, D. R. ; Beck, B. H. ; Stafford, L. J. ; Long, J. W. ; Sellers, J. C. ; Huang, Z. Q. ; Grizzle, W. E. ; Stockard, C. R. ; Nash, K. T. et al. KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clin. Exp. Metastasis 2010, 27, 591-600.

31

Su, J. L. ; Wang, B. ; Wilson, K. E. ; Bayer, C. L. ; Chen, Y. S. ; Kim, S. ; Homan, K. A. ; Emelianov, S. Y. Advances in clinical and biomedical applications of photoacoustic imaging. Expert Opin. Med. Diagn. 2010, 4, 497-510.

32

Pu, K. Y. ; Shuhendler, A. J. ; Jokerst, J. V. ; Mei, J. G. ; Gambhir, S. S. ; Bao, Z. N. ; Rao, J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233-239.

33

Conversano, F. ; Soloperto, G. ; Greco, A. ; Ragusa, A. ; Casciaro, E. ; ChiriacⅡ, F. ; Demitri, C. ; Gigli, G. ; Maffezzoli, A. ; Casciaro, S. Echographic detectability of optoacoustic signals from low-concentration PEG-coated gold nanorods. Int. J. Nanomedicine 2012, 7, 4373-4389.

34

Shen, S. ; Tang, H. Y. ; Zhang, X. T. ; Ren, J. F. ; Pang, Z. Q. ; Wang, D. G. ; Gao, H. L. ; Qian, Y. ; Jiang, X. G. ; Yang, W. L. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013, 34, 3150-3158.

35

Jing, L. J. ; Liang, X. L. ; Deng, Z. J. ; Feng, S. S. ; Li, X. D. ; Huang, M. M. ; Li, C. H. ; Dai, Z. F. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 2014, 35, 5814-5821.

36

Nguyen-Huy, C. ; Kim, N. ; Nguyen-Phan, T. D. ; Yoo, I. K. ; Shin, E. W. Adsorptive interaction of bisphenol A with mesoporous titanosilicate/reduced graphene oxide nanocomposite materials: FT-IR and Raman analyses. Nanoscale Res. Lett. 2014, 9, 462.

37

Dong, A. ; Randolph, T. W. ; Carpenter, J. F. Entrapping intermediates of thermal aggregation in alpha-helical proteins with low concentration of guanidine hydrochloride. J. Biol. Chem. 2000, 275, 27689-27693.

38

Tkachenko, A. G. ; Xie, H. ; Coleman, D. ; Glomm, W. ; Ryan, J. ; Anderson, M. F. ; Franzen, S. ; Feldheim, D. L. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J. Am. Chem. Soc. 2003, 125, 4700-4701.

39

Szatmári, T. ; Dobra, K. The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors. Front. Oncol. 2013, 3, 310.

40

Urata, C. ; Yamada, H. ; Wakabayashi, R. ; Aoyama, Y. ; Hirosawa, S. ; Arai, S. ; Takeoka, S. ; Yamauchi, Y. ; Kuroda, K. Aqueous colloidal mesoporous nanoparticles with ethenylene- bridged silsesquioxane frameworks. J. Am. Chem. Soc. 2011, 133, 8102-8105.

41

Yamada, H. ; Urata, C. ; Ujiie, H. ; Yamauchi, Y. ; Kuroda, K. Preparation of aqueous colloidal mesostructured and mesoporous silica nanoparticles with controlled particle size in a very wide range from 20 nm to 700 nm. Nanoscale 2013, 5, 6145-6153.

42

LeBeau, A. M. ; Brennen, W. N. ; Aggarwal, S. ; Denmeade, S. R. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol. Cancer Ther. 2009, 8, 1378-1386.

43

Yang, L. ; Sajja, H. K. ; Cao, Z. ; Qian, W. ; Bender, L. ; Marcus, A. I. ; Lipowska, M. ; Wood, W. C. ; Wang, Y. A. uPAR- targeted optical imaging contrasts as theranostic agents for tumor margin detection. Theranostics 2013, 4, 106-118.

44

Conejo, J. R. ; Kleeff, J. ; Koliopanos, A. ; Matsuda, K. ; Zhu, Z. W. ; Goecke, H. ; Bicheng, N. ; Zimmermann, A. ; Korc, M. ; Friess, H. et al. Syndecan-1 expression is up-regulated in pancreatic but not in other gastrointestinal cancers. Int. J. Cancer 2000, 88, 12-20.

DOI
File
nr-8-12-3864_ESM.pdf (785.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 April 2015
Revised: 19 August 2015
Accepted: 25 August 2015
Published: 13 November 2015
Issue date: December 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was funded in part by the Rounsavall Foundation. C. U. was supported by the NIH R25 Cancer Education program CA 134283.

Return