Journal Home > Volume 8 , Issue 12

Here we developed a saccharic colorimetric method based on the combination of chemoselective ligation and enzyme-specific catalysis using aminooxy/hydrazine-functionalized gold nanoparticles (AO/AuNPs or H/AuNPs). In the detection of galactose (Gal), galactohexodialdose (GHDA), the galactose oxidase (GalOx)-catalyzed product, has an aldehyde group, which allows it to chemoselectively react with an aminooxy or hydrazine group at the outer layer of AO/AuNPs or H/AuNPs by oxime/hydrazone click chemistry to form oxime or hydrozone. Consequently, through the specific recognition of 1, 4-phenylenediboronic acid (PDBA) on cis-diols, GHDA, which contains two pairs of hydroxyls in the cis form, can bind not only with AO/AuNPs or H/AuNPs, but also with PDBA to form boronate diester, thereby triggering the aggregation of AuNPs and causing the corresponding color change. As GalOx catalyzed specific substrates, the amount of Gal correlated with the production of GHDA and the extent of AuNPs aggregation, thus allowing a simple and easily operatable colorimetric method for Gal detection to be developed. Under the optimized experimental conditions, the ratios of absorbance at a wavelength of 617 nm to that at 536 nm vary linearly with the logarithmic values of Gal concentrations within a wide range of 500 nM to 5 mM. Moreover, this colorimetric method shows anti-interference capability and high sensitivity with a detection limit of 21 nM. Thus, a universal platform for accurate and specific colorimetric analysis can be established through the integration of chemoselective ligation with enzyme specific catalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Integration of chemoselective ligation with enzymespecific catalysis: Saccharic colorimetric analysis using aminooxy/hydrazine-functionalized gold nanoparticles

Show Author's information Juan Zhang1Jun Lv1,2Xiaonan Wang1Defeng Li1Zhaoxia Wang3( )Genxi Li1,4( )
Laboratory of Biosensing TechnologySchool of Life SciencesShanghai UniversityShanghai200444China
Shanghai Key Laboratory of Bio-Energy CropsShanghai UniversityShanghai200444China
Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
State Key Laboratory of Pharmaceutical BiotechnologyDepartment of BiochemistryNanjing UniversityNanjing210093China

Abstract

Here we developed a saccharic colorimetric method based on the combination of chemoselective ligation and enzyme-specific catalysis using aminooxy/hydrazine-functionalized gold nanoparticles (AO/AuNPs or H/AuNPs). In the detection of galactose (Gal), galactohexodialdose (GHDA), the galactose oxidase (GalOx)-catalyzed product, has an aldehyde group, which allows it to chemoselectively react with an aminooxy or hydrazine group at the outer layer of AO/AuNPs or H/AuNPs by oxime/hydrazone click chemistry to form oxime or hydrozone. Consequently, through the specific recognition of 1, 4-phenylenediboronic acid (PDBA) on cis-diols, GHDA, which contains two pairs of hydroxyls in the cis form, can bind not only with AO/AuNPs or H/AuNPs, but also with PDBA to form boronate diester, thereby triggering the aggregation of AuNPs and causing the corresponding color change. As GalOx catalyzed specific substrates, the amount of Gal correlated with the production of GHDA and the extent of AuNPs aggregation, thus allowing a simple and easily operatable colorimetric method for Gal detection to be developed. Under the optimized experimental conditions, the ratios of absorbance at a wavelength of 617 nm to that at 536 nm vary linearly with the logarithmic values of Gal concentrations within a wide range of 500 nM to 5 mM. Moreover, this colorimetric method shows anti-interference capability and high sensitivity with a detection limit of 21 nM. Thus, a universal platform for accurate and specific colorimetric analysis can be established through the integration of chemoselective ligation with enzyme specific catalysis.

Keywords: oxime/hydrazone ligation, enzyme catalysis, aminooxy/hydrazine-functionalized gold nanoparticles

References(38)

1

Dirksen, A. ; Dawson, P. E. Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjugate Chem. 2008, 19, 2543-2548.

2

Zhang, Y. ; Yu, M. ; Zhang, C. ; Ma, W. F. ; Zhang, Y. T. ; Wang, C. C. ; Lu, H. J. Highly selective and ultra fast solid- phase extraction of N-glycoproteome by oxime click chemistry using aminooxy-functionalized magnetic nanoparticles. Anal. Chem. 2014, 86, 7920-7924.

3

Kitov, P. I. ; Vinals, D. F. ; Ng, S. ; Tjhung, K. F. ; Derda, R. Rapid, hydrolytically stable modification of aldehyde- terminated proteins and phage libraries. J. Am. Chem. Soc. 2014, 136, 8149-8152.

4

Raindlová, V. ; Pohl, R. ; Šanda, M. ; Hocek, M. Direct polymerase synthesis of reactive aldehyde-functionalized dna and its conjugation and staining with hydrazines. Angew. Chem., Int. Ed. 2010, 49, 1064-1066.

5

Chen, J. ; Shah, P. ; Zhang, H. Solid phase extraction of N- linked glycopeptides using hydrazide tip. Anal. Chem. 2013, 85, 10670-10674.

6

Kajisa, T. ; Sakata, T. Fundamental properties of phenylboronic- acid-coated gate field-effect transistor for saccharide sensing. ChemElectroChem 2014, 1, 1647-1655.

7

Li, J. ; Liu, L. L. ; Wang, P. G. ; Yang, Y. ; Zheng, J. B. Amplified detection of saccharide based on redox-poly(phenol- co-3-hydroxyphenylboronic acid) coupling with a redox cycling. Sensor. Actuat. B-Chem. 2014, 198, 219-224.

8

Kejík, Z. ; Bříza, T. ; Králová, J. ; Martásek, P. ; Král, V. Selective recognition of a saccharide-type tumor marker with natural and synthetic ligands: A new trend in cancer diagnosis. Anal. Bioanal. Chem. 2010, 398, 1865-1870.

9

Sun, X. L. ; Zhu, B. ; Ji, D. K. ; Chen, Q. B. ; He, X. P. ; Chen, G. R. ; James, T. D. Selective fluorescence detection of monosaccharides using a material composite formed between graphene oxide and boronate-based receptors. ACS Appl. Mater. Interfaces 2014, 6, 10078-10082.

10

Kong, K. V. ; Ho, C. J. H. ; Gong, T. X. ; Lau, W. K. O. ; Olivo, M. Sensitive SERS glucose sensing in biological media using alkyne functionalized boronic acid on planar substrates. Biosens Bioelectron 2014, 56, 186-191.

11

Li, Y. P. ; Jiang, L. ; Zhang, T. ; Lin, M. ; Tian, D. B. ; Huang, H. Colorimetric detection of glucose using a boronic acid derivative receptor attached to unmodified AuNPs. Chin. Chem. Lett. 2014, 25, 77-79.

12

Unnikrishnan, B. ; Palanisamy, S. ; Chen, S. M. A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite. Biosens. Bioelectron. 2013, 39, 70-75.

13

Kim, M. I. ; Shim, J. ; Li, T. H. ; Woo, M. A. ; Cho, D. ; Lee, J. ; Park, H. G. Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst 2012, 137, 1137-1143.

14

Gokoglan, T. C. ; Soylemez, S. ; Kesik, M. ; Toksabay, S. ; Toppare, L. Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection. Food Chem. 2015, 172, 219-224.

15

Lyons, C. T. ; Stack, T. D. P. Recent advances in phenoxyl radical complexes of salen-type ligands as mixed-valent galactose oxidase models. Coordin. Chem. Rev. 2013, 257, 528-540.

16

Kanyong, P. ; Pemberton, R. M. ; Jackson, S. K. ; Hart, J. P. Development of an amperometric screen-printed galactose biosensor for serum analysis. Anal. Biochem. 2013, 435, 114-119.

17
Hartmans, S. ; de Vries, H. T. ; Beijer, P. ; Brady, R. L. ; Hofbauer, M. ; Haandrikman, A. J. Production of oxidized guar galactomannan and its applications in the paper industry. In Hemicelluloses: Science and Technology; Gatenholm, P. ; Tenkanen, M., Eds. ; American Chemical Society: Washington, DC, 2004; pp 360-371.https://doi.org/10.1021/bk-2004-0864.ch023
DOI
18

Ioannou, A. ; Cini, E. ; Timofte, R. S. ; Flitsch, S. L. ; Turner, N. J. ; Linclau, B. Heavily fluorinated carbohydrates as enzyme substrates: Oxidation of tetrafluorinated galactose by galactose oxidase. Chem. Commun. 2011, 47, 11228-11230.

19

Rannes, J. B. ; Ioannou, A. ; Willies, S. C. ; Grogan, G. ; Behrens, C. ; Flitsch, S. L. ; Turner, N. J. Glycoprotein labeling using engineered variants of galactose oxidase obtained by directed evolution. J. Am. Chem. Soc. 2011, 133, 8436-8439.

20

Turner, N. J. Enantioselective oxidation of C-O and C-N bonds using oxidases. Chem. Rev. 2011, 111, 4073-4087.

21

Leppänen, A. S. ; Xu, C. L. ; Parikka, K. ; Eklund, P. ; Sjöholm, R. ; Brumer, H. ; Tenkanen, M. ; Willför, S. Targeted allylation and propargylation of galactose-containing polysaccharides in water. Carbohyd. Polym. 2014, 100, 46-54.

22

Parikka, K. ; Leppänen, A. S. ; Pitkänen, L. ; Reunanen, M. ; Willför, S. ; Tenkanen, M. Oxidation of polysaccharides by galactose oxidase. J. Agric. Food Chem. 2010, 58, 262-271.

23

Charmantray, F. ; Touisni, N. ; Hecquet, L. ; Mousty, C. Amperometric biosensor based on galactose oxidase immobilized in clay matrix. Electroanalysis 2013, 25, 630-635.

24

Tkáč, J. ; Gemeiner, P. ; Šturdík, E. Rapid and sensitive galactose oxidase-peroxidase biosensor for galactose detection with prolonged stability. Biotechnol. Technique 1999, 13, 931-936.

25

Deng, J. J. ; Yu, P. ; Yang, L. F. ; Mao, L. Q. Competitive coordination of Cu2+ between cysteine and pyrophosphate ion: Toward sensitive and selective sensing of pyrophosphate ion in synovial fluid of arthritis patients. Anal. Chem. 2013, 85, 2516-2522.

26

Zhang, M. ; Liu, Y. Q. ; Ye, B. C. Colorimetric assay for sulfate using positively-charged gold nanoparticles and its application for real-time monitoring of redox process. Analyst 2011, 136, 4558-4562.

27

Ge, S. G. ; Liu, F. ; Liu, W. Y. ; Yan, M. ; Song, X. R. ; Yu, J. H. Colorimetric assay of K-562 cells based on folic acid- conjugated porous bimetallic Pd@Au nanoparticles for point- of-care testing. Chem. Commun. 2014, 50, 475-477.

28

Gu, Y. J. ; Cheng, J. P. ; Lin, C. C. ; Lam, Y. W. ; Cheng, S. H. ; Wong, W. T. Nuclear penetration of surface functionalized gold nanoparticles. Toxicol. Appl. Pharm. 2009, 237, 196-204.

29

Li, H. X. ; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 14036-14039.

30

Haiss, W. ; Thanh, N. T. K. ; Aveyard, J. ; Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 2007, 79, 4215-4221.

31

Lou, T. T. ; Chen, Z. P. ; Wang, Y. Q. ; Chen, L. X. Blue-to- red colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 1568-1573.

32

Elghanian, R. ; Storhoff, J. J. ; Mucic, R. C. ; Letsinger, R. L. ; Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078-1081.

33

Chen, G. H. ; Chen, W. Y. ; Yen, Y. C. ; Wang, C. W. ; Chang, H. T. ; Chen, C. F. Detection of mercury(Ⅱ) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 2014, 86, 6843-6849.

34

Zhu, K. ; Zhang, Y. ; He, S. ; Chen, W. W. ; Shen, J. Z. ; Wang, Z. ; Jiang, X. Y. Quantification of proteins by functionalized gold nanoparticles using click chemistry. Anal. Chem. 2012, 84, 4267-4270.

35

Liu, D. B. ; Chen, W. W. ; Wei, J. H. ; Li, X. B. ; Wang, Z. ; Jiang, X. Y. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal. Chem. 2012, 84, 4185-4191.

36

Kong, B. ; Zhu, A. W. ; Luo, Y. P. ; Tian, Y. ; Yu, Y. Y. ; Shi, G. Y. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew. Chem., Int. Ed. 2011, 50, 1837-1840.

37

Brahim, S. I. ; Maharajh, D. ; Narinesingh, D. ; Guiseppi-Elie, A. Design and characterization of a galactose biosensor using a novel polypyrrole-hydrogel composite membrane. Anal. Lett. 2002, 35, 797-812.

38

Şenel, M. ; Bozgeyik, İ. ; Çevik, E. ; Fatih Abasıyanık, M. A novel amperometric galactose biosensor based on galactose oxidase-poly(N-glycidylpyrrole-co-pyrrole). Synthetic Met. 2011, 161, 440-444.

File
nr-8-12-3853_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 June 2015
Revised: 05 August 2015
Accepted: 24 August 2015
Published: 19 October 2015
Issue date: December 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Nos. 31101354 and 21235003) and the Innovation Program of Shanghai Municipal Education Commission (No. 15ZZ048).

Return